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Preface

This volume is dedicated to Alberto Ibort on his 60th birthday. Alberto has great
and significantly contributed to many fields of mathematics and physics, always
with highly original and innovative ideas.

Most of Albertos’s scientific activity has been motivated by geometric ideas,
concepts, and tools that are deeply related to the framework of classical dynamics and
quantum mechanics. Let us mention some of the fields of expertise of Alberto Ibort:
GeometricMechanics; Constrained Systems; Variational Principles;Multisymplectic
structures for field theories; Super-manifolds; Inverse problem for Bosonic and
Fermionic systems; Quantum Groups, Integrable systems, BRST Symmetries;
Implicit differential equations; Yang-Mills Theories; BiHamiltonian Systems;
Topology Change and Quantum Boundary Conditions; Classical and Quantum
Control; Orthogonal Polinomials; Quantum Field Theory and Noncommutative
Spaces; Classical and Quantum Tomography; Quantum Mechanics on phase space;
Wigner-Weyl formalism; Lie-Jordan Algebras, Classical and Quantum; Quantum-to-
Classical transition; Contraction of Associative Algebras; contact geometry…

In each Alberto’s contribution, one may find not only technical novelties but also
completely new way of looking at the considered problems. Even an experienced
reader, reading Alberto contributions on his field of expertise, will find new per-
spectives on the considered topic. His enthusiasm is happily contagious, for this
reason he has had, and still has, very bright students wishing to elaborate their Ph.D.
thesis under his guidance.What is more impressive, is the broad list of rather different
topics on which he has contributed and the papers of this volume are just a sample.

It remains for us to wish that he will continue his creative scientific life for the
next 60 years.

With our admiration
Naples, Italy G. Marmo
Madrid, Spain David Martín de Diego
Barcelona, Spain Miguel Muñoz Lecanda
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Alberto Ibort

Alberto Ibort was born in Huesca, on March 4, 1958. He received his education in
Zaragoza, M.S. degrees in Physics and Mathematics and Ph.D. in Science (Physics)
in 1984, from Universidad de Zaragoza, under the guidance of Prof. Jose
F. Cariñena Marzo. After completion of his doctoral research, he was post-doc in
Paris VI, Niels Bohr Institute and University of California at Berkeley in 1986 and
1990, before joining the Department of Física Teórica at University Complutense
de Madrid, where he was Associate Professor until April 1997 when he won the
chair of Applied Mathematics at the Department of Mathematics, Universidad
Carlos III de Madrid.
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He is member of the Real Sociedad Española de Física and Real Sociedad
Matemática Española.
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Chapter 1
On a New Asymptotic Behaviour
of Toeplitz Determinants

Filiberto Ares, José G. Esteve and Fernando Falceto

Abstract In this paperwe shall study the asymptotics of the logarithmofToeplitz de-
terminants whose symbol is intermediate between those that provide a finite asymp-
totic limit to the determinant and those that induce a linear growth with the loga-
rithm of the dimension. We conjecture that in the intermediate case a new behaviour
emerges in which the logarithm of the determinant diverges at a rate smaller than the
logarithm of the dimension. We give the precise form of this asymptotic behaviour
and support it with analytic and numerical arguments. We believe this is the first time
that the intermediate regime is considered, as we were not able to find any reference
to it in the literature.

1.1 Introduction

The History of the Toeplitz determinants is a very interesting example of the cross-
breeding between Physics and Mathematics (see [1] for an excellent review). Of
course, there is a vast literature on the subject and we will present below a very par-
tial and biased account. In particular, we will focus on some conjectures, that later
on became theorems, and will be important to support our results.
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2 F. Ares et al.

Toeplitz operators are named after Otto Toeplitz who introduced them around
1907 as particular examples of the abstract theory that Hilbert was developing at that
time.

Our focus will be on the behaviour of the determinant of these operators, i.e.
Toeplitz determinants, when the dimension grows to infinity. The first result in this
direction is due to Szegő [2] that in 1915 proved a conjecture by Polyia. The latter
wrote the following comment in [3]

Our cooperation started from a conjecture which I found. It was about a determinant con-
sidered by Toeplitz and others, formed with the Fourier coefficients of a function f (x). I had
no proof, but I published the conjecture and the young Szegő found the proof…

This is sometimes called First Szegő theorem and we will review it in the next
section.

Almost 40years later, Toeplitz determinants were shown to be crucial for solving
problems of statistical physics. Namely, Kaufman andOnsager [4] found in 1949 that
the magnetization of the Ising model in two dimensions below critical temperature
could be obtained from the computation of a particular Toeplitz determinant. The
problem was that Szegő’s theorem on the asymptotic limit of the determinant gave a
trivial result in this case, and the answer was in the next to leading correction which
was not determined by the theorem.

Onsager, using an alternative form of computing the magnetization (that they did
not publish), arrived at a conjecture for the form of the next to leading corrections
for Toeplitz determinants. As he admitted, he was working to prove the conjecture,
but at some point Szegő (again Szegő) was aware of Kaufman and Onsager’s interest
and in 1952 came out with the expression for the subleading corrections establishing
the Strong Szegő theorem or Second Szegő theorem [5]. At this point it is interesting
to recall Onsager’s words quoted from [6]

…and lo and behold I found it. It was a general formula for the evaluation of Toeplitz
matrices. The only thing I did not know was how to fill out the holes in the mathematics and
show the epsilons and deltas and all that…

…the mathematicians got there first…

The third conjecture that we will review is also related to the Ising model and
provides the asymptotic expansion of the Toeplitz determinant for symbols with
zeros or discontinuities. This case is not considered in the Second Szegő Theorem
but has a great physical interest: for instance, from this result one can derive the
correlation function for the critical Ising model.

Fisher and Hartwig in 1968 [7], using partial results due to the physicists Lenard
[8] and Wu [9] together with further insights, arrived at an expression for Toeplitz
determinants for symbols that include zeros or discontinuities. The proof of this
conjecture is due to Widom (1972) [10], when discontinuities are absent, and Basor
(1978) [11], in full generality. Later on, it was discovered that in some cases the
Fisher-Hartwig conjecture do not apply. Basor and Tracy understood the reason for
this anomaly and conjectured the correct expression for the determinant in [12]. It
was finally proven to be right by Deift et al. [13].
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In this paper we want to present and motivate another conjecture on the Toeplitz
determinant for symbols that, even if they are continuous, do not fulfill the require-
ments of the Second Szegő Theorem. We will give strong evidences and analytical
arguments to show that the determinant has an asymptotic behaviour which is differ-
ent from those considered previously in the literature. Finally, we will briefly discuss
the possible physical implications of our result.

1.2 The Two Szegő’s Theorems

Consider an integrable complex function defined on the unit circle f : S1 → C. We
shall denote by TN [f ] the Toeplitz matrix with symbol f and dimension N × N . Its
entries (TN [f ])nm = fn−m are given by the Fourier coefficients of the function f ,

fk = 1

2π

∫ π

−π

f (θ)eiθkdθ.

Let us also introduce the Fourier coefficients of log f ,

sk = 1

2π

∫ π

−π

log f (θ)eiθkdθ.

Assume that f is real and positive, then the (First) Szegő theorem [2] establishes
that the dominant term of its determinant DN [f ] = det TN [f ] should be

logDN [f ] = Ns0 + o(N ). (1.1)

Observe that this theorem does not say anything about the correction o(N ). But, as
it was recognized by Szegő, it happens to be finite if the symbol f is smooth enough1

such that ∞∑
k=−∞

|fk | +
∞∑

k=−∞
|k||fk |2 < ∞. (1.2)

In this case, the Strong Szegő theorem states that the correction in (1.1) is finite in
the limit N → ∞ [5, 14],

logDN [f ] = Ns0 +
∞∑
k=1

ksks−k + o(1). (1.3)

The series in the expression above diverges when, for example, the symbol f has
a jump discontinuity. In this case the Fisher-Hartwig conjecture [7, 11] precisely

1This is the case if the symbol is C1+ε , i.e. its derivative is Hölder continuous with exponent ε > 0.
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gives the next terms in o(N ). If the symbol f presents discontinuities at θ1, . . . , θR,
the next term in the expansion (1.1) is logarithmic,

logDN [f ] = Ns0 + logN

4π2

R∑
r=1

(
log

f −
r

f +
r

)2

+ logE[f ] + o(1), (1.4)

where f ±
r are the lateral limits of f at the discontinuity point θr ,

f +
r = lim

θ→θ+
r

f (θ) and f −
r = lim

θ→θ−
r

f (θ),

and logE[f ] a constant term.

1.3 The Fisher-Hartwig Conjecture Revisited

In this Section we shall see how Fisher and Hartwig arrived at their result, extending
somehow the domain of applicability of the Strong Szegő Theorem (SST). This
will allow us to establish a more general conjecture for the asymptotic behaviour of
Toeplitz determinants with a continuous symbol that, however, does not satisfy the
smoothness condition of the SST.

In the original formulation of the SST [5], Szegő considered that the symbol f must
have a derivative satisfying the Hölder continuity condition for a non-zero exponent.
In the following years, many mathematicians tried to weak this assumption. There is
a plethora of papers were the SST is proved using different methods and considering
more general symbols, see for instance the works by Kac [15], Baxter [16], Ibraginov
[14] or Hirschman [17]. When we enunciated the SST in the previous section, we
considered the smoothness condition (1.2) due to Hirschman. This is in some sense
the weakest condition for the smoothness of the symbol f . As Devinatz showed in
[18], for a real symbol such that 0 < f (θ) < ∞

lim
N→∞

DN [f ]
eNs0

= e
∑∞

k=1 ksk s−k < ∞

if an only if f verifies (1.2).
For simplicity, and as Fisher and Hartwig precisely did, we take the symbol

f0(θ) = eβ(θ−πsign(θ)), θ ∈ [−π, π), (1.5)

that only has a discontinuity at θ = 0.
The Fourier coefficients of its logarithm are

s(0)0 = 0, and s(0)k = β

ik
, for k �= 0.
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Then if we apply to this symbol the Strong Szegő Theorem (1.3) we obtain the
Harmonic series

logDN [f0] = Ns(0)0 +
∞∑
k=1

ks(0)k s(0)−k + o(1) =
∞∑
k=1

β2

k
+ o(1),

that diverges logarithmically.
Let us suppose that logDN [f0] can be obtained truncating the series∑∞

k=1 ks
(0)
k s(0)−k

at some k = �NΛ0�, with Λ0 a positive real number. Here �t� means to take the
integer part of the real number t. Then we find

logDN [f0] =
�NΛ0�∑
k=1

ks(0)k s(0)−k =
�NΛ0�∑
k=1

β2

k
= β2 log(NΛ0) + β2γE + o(1), (1.6)

where γE is the Euler-Mascheroni constant.
Observe that this truncation precisely gives the Fisher-Hartwig expansion (1.4)

for the symbol f0. In fact, since f0(θ) presents a single discontinuity (R = 1) with
lateral limits e±βπ , the expression in (1.4) particularizes to

logDN [f0] = β2 logN + logE[f0] + o(1). (1.7)

Comparing (1.7) with (1.6) we can conclude that

logE[f0] = β2(logΛ0 + γE). (1.8)

Fisher and Hartwig were able to fix the constant term E[f0] and, therefore, the cutoff
parameter Λ0 because they realized that the Toeplitz matrix with symbol f0 is also a
Cauchy matrix.2 Using the properties of the determinants of Cauchy matrices they
determined that

E[f0] = G(1 + iβ)G(1 − iβ)

where G(z) is the Barnes G-function. Hence we have

logΛ0 = 2β−2 log |G(1 + iβ)| − γE. (1.9)

The same reasoning can be applied to a general symbol with R discontinuities. The
asymptotic behaviour of its determinant predicted by (1.4) can be deduced from the
Strong Szegő theorem (1.3) truncating the divergent terms in the series

∑∞
k=1 ksks−k .

The previous discussion suggests that one could deduce heuristically from the
Strong Szegő Theorem the asymptotic behaviour of a Toeplitz determinant generated
by a symbol that violates the smoothness condition (1.2).When this happens the series

2A matrix is of Cauchy type if its entries are of the form Cnm = (Xn − Ym)−1 with Xn − Ym �= 0,
and Xn,Ym ∈ C where n,m ∈ N.
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in (1.3) diverges. We propose that the truncation of this series at k = �NΛ�, with Λ

certain positive real number, accounts for the asymptotic expansion of the Toeplitz
determinant. That is, if the symbol f is not smooth enough, then the corresponding
determinant behaves as

logDN [f ] = Ns0 +
�NΛ�∑
k=1

ksks−k + o(1).

In the next section we shall check this conjecture for a family of continuous symbols
that does not satisfy the smoothness condition of the Strong Szegő Theorem.

1.4 Generalization of the Fisher-Hartwig Conjecture

Consider the symbols of the form

log gν(θ) = β
θ − π sign(θ)(

− log |θ |
2π

)ν , θ ∈ [−π, π), (1.10)

with β < 1 and ν ≥ 0.
In Fig. 1.1 we plot log gν(θ) for β = 1/π and different values of ν. It is a family

of positive bounded functions, 0 < gν(θ) < ∞. For ν �= 0 the function is continuous
but it is non analytical at θ = 0 since its derivative diverges at this point. For ν = 0,

-π π

-1

1
log gν(θ) ν

0
0.05
0.25
0.5

Fig. 1.1 Plot of the logarithm of the symbol gν defined in (1.10), taking β = 1/π and different
values for the exponent ν. If ν = 0 the function g0(θ) is discontinuous at θ = 0. When ν > 0 the
symbol is continuous for all θ but its derivative diverges at θ = 0
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it reduces to the symbol (1.5), studied in the previous section, that has a discontinuity
at θ = 0. Then in this limiting case the Fisher-Hartwig conjecture can be applied.

According to the discussion in the previous section, in order to determine the
asymptotic behaviour of the Toeplitz determinant generated by gν , we have to study
the convergence of the series

∞∑
k=1

ks(ν)

k s(ν)

−k , (1.11)

where s(ν)

k are the Fourier coefficients of log gν ,

s(ν)

k = 1

2π

∫ π

−π

log gν(θ)eikθdθ.

If we compute the asymptotic expansion of s(ν)

k up to first order corrections we obtain

s(ν)

k ∼ − iβ

k(log |k|)ν + iβν(log(2π) + γE)

k(log |k|)ν+1
+ O

(
1

k(log |k|)ν+2

)
. (1.12)

Therefore, the series (1.11) converges if and only if

∞∑
k=2

β2

k(log k)2ν
< ∞.

Using for instance the integral test it is immediate to see that the latter diverges for
0 ≤ ν ≤ 1/2. Thus for these values of the exponent ν the Strong Szegő theorem
(1.3) is not valid to determine the asymptotic behaviour of DN [gν]. We emphasize
again that for ν �= 0 the function is continuous and we can neither employ the Fisher-
Hartwig conjecture that only applies to symbols with discontinuities and/or zeros.

Therefore, we have to resort to the conjecture that we have proposed at the end of
the previous section. We conjecture that there exists a positive and real number Λν ,
that depends on ν, such that the asymptotic behaviour of the Toeplitz determinant
with symbol gν is given by

logDN [gν] = Ns(ν)
0 +

�NΛν�∑
k=1

ks(ν)

k s(ν)

−k + o(1).

Since log gν(θ) is an odd function then s(ν)

−k = −s(ν)

k . Hence s(ν)
0 = 0, the linear term

in logDN [gν] cancels, and

logDN [gν] =
�NΛν�∑
k=1

k|s(ν)

k |2 + o(1). (1.13)



8 F. Ares et al.

This conjecture predicts a sublogarithmic growth of logDN [gν] with the dimension
N . In fact, if we consider the asymptotic behaviour (1.12) found for s(ν)

k and we
approximate the sum in (1.13) by an integral,

�NΛν�∑
k=1

k|s(ν)

k |2 ∼
∫ NΛν

1+ε

β2

θ(log θ)2ν

[
1 + O

(
1

log θ

)]
dθ (1.14)

where ε > 0. The error that it is made approximating the sum by the integral is of
the order of N−1(logN )−2ν .

Therefore, for 0 < ν < 1/2 we have

�NΛν�∑
k=1

k|s(ν)

k |2 ∼ β2

1 − 2ν
(logNΛν)

1−2ν + O

(
1

(logN )2ν

)
.

Observe that the contribution of the subleading terms in the asymptotic behaviour
(1.12) of the Fourier coefficients s(ν)

k tends to zero in the limit N → ∞.
If we take into account that

(logNΛν)
1−2ν = (logN )1−2ν

(
1 + logΛν

logN

)1−2ν

,

and employ the expansion (1 + z)a = 1 + az + O(z2) for z < 1 and a > 0, we find

�NΛν�∑
k=1

k|s(ν)

k |2 ∼ β2

1 − 2ν
(logN )1−2ν + o(1), if 0 < ν < 1/2.

On the other hand, for ν = 1/2, the approximation in (1.14) leads to

�NΛν�∑
k=1

k|s(ν)

k |2 ∼ β2 log logNΛν + O

(
1

logN

)
.

Expressing the latter as

log log(NΛν) = log logN + log

(
1 + logΛν

logN

)
,

and applying the expansion log(1 + z) = z + O(z2) when z < 1, then

�NΛν�∑
k=1

k|s(ν)

k |2 ∼ β2 log logN + o(1).
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Finally, putting these results in the conjecture (1.13) we can conclude that

logDN [gν] = β2

1 − 2ν
(logN )1−2ν + o(1), if 0 < ν < 1/2,

and
logDN [g1/2] = β2 log logN + o(1), if ν = 1/2.

Observe that for ν = 0 the conjecture (1.13) gives the Fisher-Hartwig expansion
(1.6) with Λ0 that given in (1.9).

Let us check (1.13) numerically. Since logDN [gν] grows sublogarithmically with
the dimension N , we have to calculate it for a large range of N . In fact, notice
that (log 100)0.25 = 1.46491 . . . and, if we increase N two orders of magnitude,
(log 10, 000)0.25 = 1.74208 . . .. The problem is that if we go to larger values of
N , we must diagonalize matrices of dimensions that are impossible to cope with a
standard computer.

In principle, since the entries of a Toeplitz matrix only depend on the difference
between the row and the column, the complete matrix is determined specifying a
single row or column. However, we do not know any specific routine for computing
Toeplitz determinants that makes use of this property. Hence it is needed to store
the N 2 complex entries to calculate the determinant. If we work in double precision
in C, each entry typically occupies 8 bytes of RAM memory. Thus, making a crude
estimate, if the dimension of the matrix is N=20,000, we will need around 6 GB of
memory, and if we take N=50,000, the amount of memory required increases to 37
GB.

We have bypassed that difficulty performing the numerical calculations in the
supercomputer Memento, managed by the Instituto de Biocomputación and Física
de Sistemas Complejos, that it is part of the University of Zaragoza. Each node of this
cluster has 256 GB of memory. This has allowed us to reach dimensions of the order
of N = 105. We have computed logDN [gν] from the spectrum of the matrix that has
been obtained using the routines for Hermitian matrices provided in the Intel MKL
library [19]. This library allows to parallelize the diagonalization, taking advantage
of the 64 cores available in each node of Memento.

In Fig. 1.2, the dots represent the numerical values calculated with Memento for
logDN [gν] with ν = 0, 0.05, 0.25, and 0.50. The dashed lines represent the sum

N∑
k=1

k|s(ν)

k |2, (1.15)

that is, assuming Λν = 1. The Fourier coefficients s(ν)

k have been computed numeri-
cally for each ν. Comparing the dashed lines with the numerical points it is clear the
necessity of considering a cutoff Λν different from the unity. We have estimated its
value for each ν as follows.
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Fig. 1.2 Logarithm of the Toeplitz determinant with symbol the function gν defined in (1.10).
We represent it against the dimension N . The dots correspond to the numerical values obtained
usingMemento for different exponents ν and β = 1/π . When 0 ≤ ν ≤ 1/2, gν does not satisfy the
smoothness condition (1.2) of the Strong Szegő Theorem. The solid lines represent the conjecture
proposed in (1.13) for the asymptotic behaviour of logDN [gν ], ∑�NΛν�

k=1 k|s(ν)
k |2, with Λν those

given in Table1.1. For ν = 0 the symbol is discontinuous and we can apply the Fisher-Hartwig
conjecture. In this case Λ0 can be directly calculated using (1.9). The dashed lines correspond to
the sum

∑N
k=1 k|s(ν)

k |2, that is considering Λν = 1

Consider the difference between taking Λν = 1 and Λν > 1,

�NΛν�∑
k=N

k|s(ν)

k |2.

For large N , if we take the asymptotic expansion (1.12) for s(ν)

k and we approximate
the sum by an integral, we have

�NΛν�∑
k=N

k|s(ν)

k |2 ∼
∫ NΛν

N

(
β2

θ(log θ)2ν
− 2νβ2(log(2π) + γE)

θ(log θ)2ν+1

)
dθ.

The first term in the integral gives

∫ NΛν

N

β2

θ(log θ)2ν
dθ = β2

1 − 2ν
(logN )1−2ν

[(
1 + logΛν

logN

)1−2ν

− 1

]

= β2 logΛν

(logN )2ν
− νβ2(logΛν)

2

(logN )2ν+1
+ O

(
(logN )−2ν−2) ,
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wherewehave employed the expansion (1 + z)−a = 1 − az − a(1 − a)z2/2 + O(z3)
for z < 1 and a > 0.

With respect to the second term in the integral, we follow the same lines

∫ NΛν

N

2νβ2(log(2π) + γE)

θ(log θ)2ν+1 dθ = −β2(log(2π) + γE)(logN )−2ν

[(
1 + logΛν

logN

)−2ν

− 1

]

= 2ν(log(2π) + γE)β2 logΛν

(logN )2ν+1 + O
(
(logN )−2ν−2

)
.

Putting all together, we have

�NΛν�∑
k=N

k|s(ν)

k |2 ∼ β2 logΛν

(logN )2ν
− 2ν(log(2π) + γE)β

2 logΛν + νβ2(logΛν)
2

(logN )2ν+1
. (1.16)

Therefore, a way to estimate Λν is to calculate the difference between the numerical
values obtained for logDN [gν] and the sum

∑N
k=1 ks

(ν)

k s(ν)

−k and use the result to fit
the function in the right hand side of (1.16) where Λν is the only parameter to be
adjusted.

In order to perform the fit, we have considered the numerical values obtained
in the interval N ∈ [104, 105]. Taking into account that β = 1/π , in Table1.1 we
indicate the values of Λν that give the best fit.

The solid lines in Fig. 1.2 represent the sum
∑�NΛν�

k=1 k|s(ν)

k |2 using the values for
the cutoff Λν collected in Table1.1. The agreement between them and the numerical
points is outstanding.

In Fig. 1.3, we represent separately the same results for each value of ν considered.
In the inset of these figures we have plotted the difference between the numerical
values obtained for the determinant and our prediction,

Δ(N ) = logDN [gν] −
�NΛν�∑
k=1

k|s(ν)

k |2. (1.17)

Table 1.1 Values of Λν for different ν and β = 1/π obtained by fitting the curve on the right hand
side of (1.16) to the difference between the numerical values computed for logDN [gν ] and the sum∑N

k=1 k|s(ν)
k |2. The case ν = 0.00 has been calculated using the expression (1.9)

ν Λν

0.00 2.566

0.05 2.599

0.25 2.659

0.50 2.660
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Fig. 1.3 Logarithm of the Toeplitz determinant generated by the symbol gν defined in (1.10) for
β = 1/π , and ν = 0.05 (up), 0.25 (middle) and 0.50 (bottom). The dots correspond to the numerical
results obtained for the determinant varying the dimension N while the solid line represents the
conjecture

∑�NΛν�
k=1 k|s(ν)

k |2 using as Λν the values given in Table1.1. In the inset the crosses are
the difference (1.17) between the numerical values and the prediction. The solid line in the inset
corresponds to the curve a/Nb with the coefficients a and b those specified in Table1.2. This curve
is the best fit that we have found for Δ(N )
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Table 1.2 Coefficients a and b that give the best fit of the curve a/Nb to the difference between the
outcomes in the numerical calculation of logDN [gν ] and the conjectured behaviour∑�NΛν�

k=1 k|s(ν)
k |2

using for Λν the values determined in Table1.1

ν a (×10−3) b

0.05 1.65 0.149

0.25 2.84 0.205

0.50 1.37 0.232

We have found that the best fit to this difference is the curve

Δ(N ) ≈ a

Nb
,

with the value for the coefficients a and b indicated in Table1.2.

1.5 Application to a Principal Submatrix

In the previous paper [20] we proposed and checked numerically a conjecture for
the asymptotic behaviour of the determinant of a principal submatrix of a Toeplitz
matrix. It is natural to ask whether those results are still valid in this context.

Consider the restriction of theToeplitzmatrix generated by gν to a subset of indices
X , that we denote TX [gν]. For simplicity, let us assume that X = [x1, x2] ∪ [x3, x4].
Then, according to the conjecture established in [20], the determinant D(X ) =
det TX [gν] should behave as

D ([x1, x2] ∪ [x3, x4])  D([x1, x4])D([x1, x2])D([x2, x3])D([x3, x4])
D([x1, x3])D([x2, x4]) (1.18)

where  stands for the equality of the asymptotic behaviour when |xτ − xτ ′ | → ∞
for τ, τ ′ = 1, . . . , 4.

The determinants on the right hand side of (1.18) correspond to Toeplitz matrices
with symbol gν . Then we can apply to them the conjecture (1.13),

logD([xτ , xτ ′ ]) =
�Nτ,τ ′Λν�∑

k=1

k|s(ν)

k |2 + o(1), (1.19)

where Nτ,τ ′ = |xτ − xτ ′ |.
In order to check the validity of the expression (1.18) we introduce the quantity

ID ([x1, x2] ∪ [x3, x4]) = logD([x1, x2]) + logD([x3, x4]) − logD ([x1, x2] ∪ [x3, x4]) .

(1.20)
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Applying (1.18), we have

ID([x1, x2] ∪ [x3, x4])  − log
D([x1, x4])D([x2, x3])
D([x1, x3])D([x2, x4]) .

Considering now the expected asymptotic behaviour (1.19) for the Toeplitz determi-
nants D([xτ , xτ ′ ]), τ, τ ′ = 1, . . . , 4, we arrive at

ID ([x1, x2] ∪ [x3, x4]) 
2∑

p,p′=1

(−1)p+p′
�Np,p′+2Λν�∑

k=1

k|s(ν)

k |2. (1.21)

In Fig. 1.4 we have evaluated numerically ID for the exponents ν = 0.05, 0.25 and
0.50 taking β = 1/π . The solid line corresponds to the prediction that we have just
obtained in (1.21). In order to plot it, we have computed numerically the Fourier
coefficients s(ν)

k and we have assumed for Λν the values estimated in Table1.1. The
agreement between the numerical outcome and the expected behaviour is extraordi-
nary. This also reinforces the conjecture proposed for the Toeplitz determinants with
symbol gν .

1.6 Conclusions

In this paperwe have studied the large dimension behaviour for Toeplitz determinants
with continuous symbols that do not lie within the application domain of the Strong
Szegő theorem.

We propose a new asymptotic regime that leads to the sublogarithmic growth of
the log-determinant. That is, the logarithm of the determinant of the Toeplitz matrix
behaves like (logN )α for some 0 < α < 1, here N is the dimension. We also find a
situation with a log logN behaviour.

We should mention that this asymptotic regime for a Toeplitz determinant was
not previously observed.

We support our conjecture with numerical simulations, finding a very good agree-
ment that leaves little doubt about the correctness of our proposal.

Finally, we apply the results to a different related problem, that of the asymptotic
behaviour of a principal submatrix of a Toeplitz matrix that we have studied in
a previous publication. Again the agreement of our conjecture and the numerical
simulation is excellent.

As a possible physical application of these ideas we mention the entanglement
entropy in the Kitaev chain with long range couplings, whose Hamiltonian is

H =
N∑
n=1

(
ha†nan + a†nan+1 + a†n+1an

)
+

N∑
n=1

N/2∑
l=1

2

l(log(Al))ν

(
a†na

†
n+l − anan+l

)
,
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Fig. 1.4 Difference between the determinants (1.20) for the symbol gν defined in (1.10) considering
β = 1/π and ν = 0.05 (up), 0.25 (middle) and 0.5 (bottom). We represent it as a function of the
cross-ratio y = (x3−x2)(x4−x1)

(x3−x1)(x4−x2)
. In all the cases we have taken |x1 − x2| = |x3 − x4| = 500 and we

have modified the distance |x2 − x3| from 1 up to 10,000. The dots � are the results of the numerical
calculations while the solid line corresponds to the conjecture (1.21) using as Λν the values given
in Table1.1 for each ν
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here an, a†n and the fermionic creation and annihilation operators and h, A > 1,
0 ≤ ν ≤ 1/2 are constants.

This problem is at present under investigation, but some preliminary results seem
to indicate that the previous techniques can be applied and the entanglement entropy
of its ground state do indeed grow sublogarithmically.
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Chapter 2
Bulk-Edge Dualities in Topological
Matter

Manuel Asorey

Abstract Novel bulk-edge dualities have recently emerged in topological materials
from the observation of some phenomenological correspondences. The similarity of
these dualities with string theory dualities is very appealing and has boosted a quite
significant number of cross field studies. We analyze the bulk-edge dualities in the
integer quantum Hall effect, where due to the simpler nature of planar systems the
duality can be analysed by powerful analytic techniques. The results show that the
correspondence is less robust than expected. In particular, it is highly dependent of
the type of boundary conditions of the topological material.We give a formal proof of
the equivalence of bulk and edge approaches to the quantization of Hall conductivity
formetallic plateswith local boundary conditions. However, the proof does notworks
for non-local boundary conditions, like the Atiyah-Patodi-Singer conditions, due to
the appearance of gaps between the bulk and edge states.

2.1 Introduction

Topological matter is a new state of matter which includes topological quantum
phases, topological insulators and topological semimetals. The field has undergone
an impressive development in the last years, motivated by its potential applications
to spintronics and quantum computation.

One interesting characteristic of some of the new topological materials is that its
bulk is insulating while its edge is metallic. This striking property is made possible
by the appearance of edge states. The quantized conducting properties of these ma-
terials are usually characterized by topological indices that either depend on the bulk
observables of the material or on the number of edge states with special character-
istics [1, 2] (see also [3]). The amazing coincidence of the two ways of computing
the quanta of conductivity is sometimes attributed to a mysterious bulk-edge cor-
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respondence. The appealing characteristics of such a correspondence has been in
some cases related to the AdS/CFT duality that arises from string theory supporting
a generalized holographic principle. The AdS/CFT correspondence is more explicit
in 2+1 dimensions, where it becomes a real bulk-edge correspondence [4]. In this
note we explore the bulk-edge correspondence in topological materials in some cases
where there is an analytic control of the phenomenon. As in the case of string theory
the phenomenon becomes simpler in lower dimensional systems like planar metallic
plates. In two dimensions finite size effects appear to play an essential role in the
analysis of the degeneracy of the ground state of magnetic systems by means of the
Atiyah-Patodi-Singer (APS) index theorems [5]. However, the connection between
the roles of edge and bulk states is not so evident in the derivation of the quantiza-
tion of the electric conductivity. In this note we address such a problem in the case
of integer quantum Hall effect. In particular, we analyze the stability of the integer
character of the topological bulk index for finite planar metallic plates. showing that,
in fact, the robustness of the quantization of the Hall conductivity does not rely only
on bulk states. The contribution of edge states is essential for such a phenomenon,
and the final result is highly dependent on the type of boundary conditions of the
system.

2.2 Hall Effect in Planar Systems

Although the quantum physics of ordinary metals is described by non-relativistic
quantummechanics the samephenomenon appears in relativistic systems and in some
non-relativistic systems like graphene where its low energy behavior is described by
an effective relativistic system. Let us consider a massless Dirac fermion in a planar
geometry. The Hamiltonian is given by

H1 = i /DA (2.1)

where

/DA =
2∑

j=1

σ j (∂ j − ieA j ) (2.2)

andσ j , i = 1, 2 arePaulimatrices andwehavenormalized the effective speedof light
and the Planck constant (c = � = 1). The electromagnetic potential A j in the case
of a constant transverse magnetic field B can be given by A1 = ε1

e , A2 = Bx1 + ε2
e ,

where ε j , j = 1, 2 are two arbitrary constants and e is the charge of the electron.
The spectrum of this Hamiltonian was found by Landau to be infinitely degen-

erated and quantized E±
n = ±√

2eBn, n ∈ N. This quantization of the Hamiltonian
spectrum is on the roots of the integer quantum Hall effect. In fact, the square of the
Dirac Hamiltonian is one half the standard non-relativistic Hamiltonian of the Hall
effect
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H2 = − 1
2

/D2
A = − 1

2

2∑

j=1

(∂ j − ieA j )
2 + 1

2eBσ3, (2.3)

with energy spectrum

E±
n = eB(n + 1

2 ) ± 1
2eB = 1

2eBm±, (2.4)

where m+ = n + 1 and m− = n. The existence of discretized energy levels implies
the insulating character of the metal due to the effect of the magnetic field. However,
for finite size metallic plates the situation can change due to the action of the edges.

What is remarkable is that even in absence of edges it is possible to infer the
quantization of the Hall conductivity. The argument is due to Thouless et al. [1].
If we consider the Hall system in a torus T

2 the consistency conditions require a
quantization of the magnetic flux, i.e. for a torus with unit radius the magnetic field
is quantized eB = k

2π in terms of integers k ∈ Z [6]. In such a case the spectrum
of the Hall Hamiltonian H2 is discrete E±

n = |k|(n + 1
2 ) ± 1

2 |k| and independent of
the magnetic phases ε j , j = 1, 2. However, the eigenstates ψ±l

n do depend on those
phases. The degeneracy of the different energy levels is 2|k|, except for the vacuum
state n = 0 with vanishing energy, where the degeneracy is simply |k|. The existence
of zero-modes is guaranteed by the Atiyah-Singer index theorem. The eigenmodes
of the spin σ3 operator are called chiral states. The index theorem tell us that the
difference between the numbers of zero modes with positive (ν+) and negative (ν−)
chiralities is given by the Chern class defined by the magnetic field on the torus (see
also [7])

ν+ − ν− = 1

2π

∫

T2
F = k. (2.5)

where F = ed A and

ν± = dim{ψ ∈ ker /DA, σ3ψ = ±ψ}. (2.6)

Now, since for k > 0, ν− = 0 and for k < 0, ν+ = 0 we have that

dim ker /DA = ν+ + ν− = |k|, (2.7)

i.e. the zero modes are chiral and its degeneracy is half of that of higher energy
modes.

The observation of Thouless et al. is that the Hall conductivity can be given in
terms of Landau states by Thouless et al. [1]

σ k
xy = − ie2

4π2

ν∑

n=0

|k|−1∑

l=0

∫

T̂2

∫

T2

[
(∂ε1ψ

l
n)

∗∂ε1ψ
l ′
n − (∂ε1ψ

l ′
n )∗∂ε1ψ

l
n

]
, (2.8)
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where ν is the highest integer with Eν < EF and T̂
2 is the dual torus of harmonic

forms, which is parametrized by the fluxes (ε1, ε2) ∈ (0, 1
k ) × (0, 1

k ) of the magnetic
field. ν is also the number of Landau levels that are completely filled of electrons.
Now, Hall conductivity σ k

xy is up to a constant nothing but ν times the first Chern
class of the Fourier-Mukai transform of the complex bundle Ek(T2, C) defined by the
magnetic field [8]. It is well known that for the first Landau energy level the Fourier-
Mukai transform interchanges the rank and the Chern class of the bundles, mapping
in this case a rank 1 bundle with first Chern class k into a rank k bundle with unit first
Chern class [9–11]. The transformation can be also applied to higher Landau energy
levels which finally leads to a vector bundle with Chern class ν when restricted to
the filled Landau levels. In this sense, the quantization of Hall conductivity

σ k
xy = e2

2π
ν (2.9)

is just a consequence of the Fourier-Mukai duality [12]. Although a metallic torus
can be built, it is not possible to generate a constant magnetic field across it because
it will require a ring of magnetic monopoles. However, an effective torus appears for
infinite metallic plates, because in such a case the Landau spectral problem on the
plane (2.4) can be mapped by Floquet-Bloch theorem into the spectral problem of a
continuous family of spectral problems (2.3) on a unit torus with arbitrary magnetic
fluxes ε1, ε2 ∈ (0, 2π). Since the spectrum of the operators (2.4) does not depend
on the fluxes ε1, ε1 ∈ (0, 2π), the spectral bands reduce to discrete points like in
Fig. 2.1. In this sense, the quantization of the conductivity in infinite metallic plates
can be fully characterized in physical terms by bulk properties.

Fig. 2.1 Landau levels for a magnetic field eB = 25/2π and arbitrary magnetic fluxes (ε1, ε2)
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2.3 Boundary Effects and Atiyah-Patodi-Singer Theorem

One question which immediately arises is how this quantization can be maintained
in cases where the magnetic flux across the plate is not quantized. The answer can
be given in terms another index theorem, the Atiyah-Patodi-Singer theorem [5]. Let
us consider an infinitely long metallic strip of unit width. Due to the translation
invariance along the infinite direction of the strip one can identify by Floquet-Bloch
theory the spectrum of the Dirac operator with that of the same operator on a cylinder
of unit radius and arbitrary magnetic flux around the the compact direction, i.e.

− i /DA = −iσ1(∂x ) − iσ2(∂ϕ + iε2 + i2πeBx) (2.10)

with x ∈ [0, 1] and ϕ ∈ [0, 2π ] (Fig. 2.2).
Now, the operator−i /D is symmetric in the space of spinors with compact support,

but to become selfadjoint we must introduce appropriate boundary conditions at the
edges of the cylinder. The most general boundary conditions are given by Asorey et
al. [13, 14]

(
1 − σ2 0

0 1 + σ2

)(
ψ

S11

ψ
S10

)
= U

(
σ3(1 + σ2) 0

0 σ3(1 − σ2)

) (
ψ

S11

ψ
S10

)
, (2.11)

where U is any unitary operator acting on the boundary Hilbert space of spinors
L2((S11 × S10), C) commuting with σ2, and ψS11

and ψS10
are the boundary values of

the spinors at the two ends of the cylinder. The APS boundary conditions are given
by ∏ j

+ψ
S1i

= 0, j = 0, 1, (2.12)

where
∏ j

+ are the orthogonal projectors to the subspaces of non-negative eigenvalues
of the boundary Dirac operators

/DS1j
= −iσ2(∂ϕ + iε2 + i j2πeB)

on the Hilbert spaces of boundary spinors L2(S1j ) for j = 0, 1. The APS boundary
conditions are highly non-local. Because of the anticommutation of σ3 with the
boundary operators /DS1i

we also have that

Fig. 2.2 Cylindric space
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	 j
−σ3ψS1j

= 0, j = 0, 1, (2.13)

where 	 j
− are the orthogonal projectors to the subspacesH −

j of non-positive eigen-
values of /DS1j

. In the splitting of the Hilbert space of boundary Dirac spinors

H j = L2(S1j , C
2) = H +

j ⊕ H −
j into the orthogonal subspaces of the non-positive

and positive eigenvalues of /DS1j
, the unitary operator corresponding to the APS

boundary conditions (2.13) is

U =

⎛

⎜⎜⎝

	1
− 0 0 0
0 	1

− − 1 0 0
0 0 	0

− 0
0 0 0 	0

− − 1

⎞

⎟⎟⎠ (2.14)

The APS boundary conditions break chiral symmetry of the Dirac operator be-
cause the boundary condition is not invariant under chiral symmetry.

σ3	
j
+ = 	 j

−σ3, j = 0, 1.

The main reason for choosing APS boundary conditions is that with them the
Dirac operator is not only a selfadjoint operator but also elliptic which allow it to
satisfy the APS theorem [5].

The APS theorem generalizes the Atiyah-Singer theorem for manifolds with
boundaries and establish that the difference of the numbers of zero modes of the
Dirac operator with different chiralities can be expressed in analytic terms as

ν+ − ν− = 1

2π

∫

[0,1]×S1
F + 1

2
[h( /DS11

) − h( /DS10
) + η( /DS11

) − η( /DS10
)], (2.15)

where h( /DS1i
) = dim ker /DS1i

, i = 0, 1, and η( /DS1i
) is the eta invariant of /DS1i

given
by its spectral asymmetry, which formally is defined by

η( /DS1) =
∑

λ∈Sp /DS1

sign λ =
∑

λ∈Sp /DS1

λ

|λ| . (2.16)

The kernel of /DS10
is trivial (h( /DS10

) = 0) whenever ε2 /∈ Z and one-dimensional
(h( /DS10

) = 1) otherwise. In a similar manner h( /DS10
) also vanishes whenever ε2 +

2πeB /∈ Z and h( /DS10
) = 1 otherwise. The calculation of the η invariants is more

involved, There are two ways of obtaining the value η. One is from the analytic
continuation to s = 0 of the analytic regularization definition
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η( /DS10
) =

∑

m∈Z

sign(m + ε)

(m + ε)s

∣∣∣∣
s=0

ε /∈ Z,

η( /DS11
) =

∑

m∈Z

sign(m + ε + 2πeB)

(m + ε + 2πeB)s

∣∣∣∣
s=0

ε + 2πeB /∈ Z. (2.17)

Another method is based on the identification of η with the imaginary part of the
zeta function of the determinant of the Dirac operator

η( /DS1i
)] = −1

2
Im log det /DS1i

. (2.18)

Both methods give the same results [15, 16]

η( /DS10
)] = ε2 − [ε2], η( /DS11

)] = ε2 + 2πeB − [ε2 + 2πeB], (2.19)

when ε2 /∈ Z and ε2 + 2πeB /∈ Z. The brackets [ε] mean the integer part of ε

Now, since by Stokes theorem

∫

[0,1]×S1
F = e

∫

S11

A − e
∫

S11

A = 2πeB, (2.20)

we have
ν+ − ν− = [ε2 + 2πeB] − [ε2]. (2.21)

Since ν± = 0 when ∓B ≥ 0, the total number of zero modes of the Dirac operator
is

ν = ν+ + ν− = [ε2 + 2πeB] − [ε2] = |[ε2 + 2πeB] − [ε2]|. (2.22)

Notice that the number of zero modes is always a positive integer even when the
magnetic flux crossing the plate is not an integer multiple of the Bohr quantum. To
some extent the contribution of the boundary supplements the external magnetic flux
to reach the nearest integer quantum value. This result is also independent of the
ambiguities that arise in the calculation of the spectral asymmetry η of the boundary
Dirac operators [17].

The full spectrum of half the square of Dirac operator H2 = 1
2

/D2
A = − 1

2�A +
eBσ3 is displayed in Fig. 2.3. The Landau levels get modified and the most significa-
tive effect is the appearance of edge stateswhich are localized near the boundaries and
whose energies interpolate between the different levels of the infinite dimensional
cylinder.

Notice that since chiral symmetry is broken by the APS boundary conditions
there is no paring between positive and negative eigenvalues of the spectrum of
the Dirac operator /DA. In the lowest Landau level all eigenstates have the same
chirality as the sign of the magnetic field B, whereas the nearest edge states have the
opposite chirality. We also remark the bending of the high energy levels with respect
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Fig. 2.3 Landau spectrum of the H2 = 1
2

/D2
A operator in a cylinder for a magnetic field eB =

25/(2π) with APS boundary conditions and vanishing magnetic fluxes (ε2 = 0)

to their values for an infinite plate. However, as already pointed out the APS theorem
guarantees that there is no bending for the ground state.

From a physical viewpoint APS boundary conditions are not realistic for ordinary
metals. Physical boundary conditions are local unlike the APS boundary conditions,
i.e. U is a finite dimensional matrix acting only on spinor indices. Among local
boundary conditions a simple type of chiral boundary conditions is given by

U = e2i arctan e
θ

I. (2.23)

The corresponding conditions

(
σ1 + ieθσ3σ3 0

0 −σ1 + ieθσ3σ3

) (
ψ

S11

ψ
S10

)
= 0 (2.24)

are known as chiral bag boundary conditions [13]. In the particular case θ = 0,
U = i I one gets the Dirichlet boundary condition for the upper component of the
Dirac spinor,

(I + σ3)ψ S11
= (I + σ3)ψ S10

= 0. (2.25)

The Landau spectrum in this case is displayed in Fig. 2.4. A remarkable difference
with the spectrum of APS boundary conditions is that the ground state is not degener-
ate pointing out that the APS theorem does not hold with local boundary conditions.
Another difference is that in this case there is no clear splitting between edge and
bulk states, which is manifest in the existence of a continuous interpolation between
central andmarginal states unlike in the APS case where there are large gaps between
these states [18].
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Fig. 2.4 Landau spectrum in a cylinder for a magnetic field eB = 25/(2π) with local boundary
conditions (θ = 0) and null extra magnetic fluxes (ε2 = 0) across the cylinder

2.4 Quantization of the Hall Conductivity

The action of a constant electric field E along the axis of the cylinder modifies the
Hamiltonian1

H3 = 1
2

/D2
A + 1

2eEx

introducing an slight tilt into its spectrum (see Fig. 2.5) which mixes the spectral
bands and generates a current along the cylinder.

The Hall conductivity

σxy = Iϕ
2πE

measures the ratio of the induced transverse current Iϕ per unit area and the applied
electric field E . The transverse current is given by the sum over all occupied states
with energies below the Fermi level EF , i.e over all eigenstates ψnj of H3 with
energies Enj < EF

Iϕ = −i

Enj<EF∑

n, j

∫

[0,1]×S1
ψ∗
nj (∂ϕ + iε2 + i2πeBx)ψnj =

Enj<EF∑

n, j

∫

[0,1]×S1
ψ∗
nj ∂ε2H3)ψnj

Now, since the eigenstates ψnj are normalized,

∫

[0,1]×S1
(∂ε2ψ

∗
nj )H3ψnj +

∫

[0,1]×S1
ψnj H3∂ε2ψnj = 0. (2.26)

1From here on we assume a non-relativistic approximation to the interaction with the electric field
which is closer to the phenomenological setup of the quantum Hall effect.



26 M. Asorey

Fig. 2.5 Landau spectrum in a cylinder with magnetic field eB = 25/(2π) and unit electric field
(eE = 1) with local boundary conditions (θ = 0) and null extra magnetic fluxes (ε2 = 0) across
the cylinder

Thus,

Iϕ =
Enj<EF∑

n, j

∂ε2

∫

C2
ψ∗

nj H3ψnj =
Enj<EF∑

n, j

∂ε2Enj . (2.27)

This result holds for a compact cylinder [0, 1] × S1. However, as already mentioned
usual physical systems do not have a cylindric form, they rather appear in the form
of long strips. In such a case, assuming that the long direction of the strip is infinite,
we can map the spectrum of the Hamiltonian by Floquet-Bloch theorem, into a
continuous family of Hamiltonians H ε2

3 on the cylinder with magnetic fluxes ε2 ∈
(0, 1). In that case the spectrum becomes continuous because of the dependence on
the magnetic fluxes ε2 and is given by the union of a family of continuous Hall bands

Sp H3 =
∞⋃

n

Im En,

where En : S1 → R, n = 0, . . . ,∞ are the real functions which describe the spec-
trum of Landau levels of H3 on the cylinder for different values of the transverse
magnetic flux ε2 ∈ S1. In this way the spectrum of the infinite plate fills the gaps
between the dots in Fig. 2.5, and the intensity of the Hall current is

Iϕ =
∞∑

n=0

∫ ε+
n

ε−
n

dε2∂ε2En, (2.28)
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where ε±
n are the two values of the magnetic flux where En(ε

±
n ) = EF ± eE . Here

is where the differences between the different types of boundary conditions appear.
In the case of chiral boundary conditions (2.23) the curves En(ε2) are smooth due to
the fact that the transition from edge to bulk states is continuous [19], and the Hall
current is

Iϕ =
∞∑

n=0

∫ ε+
n

ε−
n

dε2∂ε2En =
∞∑

n=0

[En(ε
+
n ) − En(ε

−
n )] = e2Eν, (2.29)

where ν is the number of filled Landau levels below the Fermi level. Thus, we
obtain the same formula for quantized conductivity that in the bulk approach (2.9).
However, in this case the contribution of both bulk and edge states is essential to
keep the quantization constant for any value of the applied magnetic field B.

On the contrary in the case of APS boundary conditions there are discontinuities
on those curves pointing out the existence of gaps dues to the sharp distinction
between edge a bulk states. In particular, first Landau level degeneracy of bulk states
is maximal thanks to the APS index theorem, whereas the first boundary states
appear after a spectral gap. In this case the Formula (2.29) does not holds, due to
the extra contributions of the discontinuities. In consequence, the quantization of the
conductivity under APS boundary conditions does not follow the same pattern as
that of chiral boundary conditions.

In some sense this result is the counterpart of the APS index theorem, which
holds for APS boundary conditions, whereas it does not make any sense for chiral
boundary conditions.

2.5 Conclusions

In summary, the correspondence bulk-edge that is very illuminating in holographic
scenarios becomes very intricate in topological matter scenarios. We have analyzed
the case of the integer quantumHall where a detailed analysis can be performed. The
results turn out to be highly dependent on the boundary conditions of the materials.

We have analyzed the quantization of Hall conductivity from standard bulk [1]
and edge [2, 3] perspectives. The results do agree in the case of local boundary
conditions because in such a case both approaches can be understood within a more
general perspective that integrates both bulk and edge contributions. However, this
compatibility only works for local boundary conditions because to some extent they
do not neatly discriminate edge from bulk states. For boundary conditions where
such a discrimination is more explicit, like the APS boundary conditions, bulk and
edge quantizations lead to slightly different results.

It is also remarkable that the bulk-edge correspondence fails in scenarios where
the APS index theorem preserves the degeneracy of the lowest Landau level whereas
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it is manifest in scenarios where the APS theorem does not applies. This feature is
not unrelated to the presence or not of clear identifications of edge states.

Generalizations to more general setups of topological matter like topological
insulators of topological semimetals are not straightforward [20] and deserve further
analysis.
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Chapter 3
Near-Horizon Modes and Self-adjoint
Extensions of the Schrödinger Operator

A. P. Balachandran, A. R. de Queiroz and Alberto Saa

Abstract We investigate the dynamics of scalar fields in the near-horizon exterior
region of a Schwarzschild black hole. We show that low-energy modes are typi-
cally long-living and might be considered as being confined near the black hole
horizon. Such dynamics are effectively governed by a Schrödinger operator with
infinitely many self-adjoint extensions parameterized by U (1), a situation closely
resembling the case of an ordinary free particle moving on a semiaxis. Even though
these different self-adjoint extensions lead to equivalent scattering and thermal pro-
cesses, a comparison with a simplified model suggests a physical prescription to
chose the pertinent self-adjoint extensions. However, since all extensions are in prin-
ciple physically equivalent, they might be considered in equal footing for statistical
analyses of near-horizon modes around black holes. Analogous results hold for any
non-extremal, spherically symmetric, asymptotically flat black hole.

3.1 Introduction

The dynamics of quantum and classical fields in the vicinity of black holes have re-
ceived considerable attention recently. Several aspects of the so-called soft photons
theorems and the asymptotic symmetries in black hole spacetimes depend ultimately
upon the dynamics and the underlying algebraic structure of test fields in the near-
horizon region of black holes. For a recent comprehensive review on these subjects,
see, for instance, [1]. Here, we revisit the case corresponding to the simplest clas-
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sical configuration of a field in the near-horizon region of a black hole: a massless
Klein-Gordon field ϕ around a Schwarzschild black hole, which metric in standard
coordinates reads

ds2 = −
(
1 − 2M

r

)
dt2 + dr2

1 − 2M
r

+ r2dΩ2. (3.1)

As we will see, massive scalar fields can be easily accommodated in our discussion,
without altering our main conclusions. By exploring the standard decomposition for
the scalar field

ϕ�m = e−iωt

r
u�m(r)Ym

� (θ, φ) (3.2)

and the usual tortoise coordinates

r∗ = r + 2M log
( r

2M
− 1

)
, (3.3)

one has the following effective Schrödinger equation for the radial function u�m

(
− d2

dr2∗
+ V�(r)

)
u�m = ω2u�m, (3.4)

where the effective potential V�(r) is given by

V�(r) =
(
1 − 2M

r

) (
�(� + 1)

r2
+ 2M

r3

)
, (3.5)

which well known aspect is depicted in Fig. 3.1. The tortoise coordinate r∗ runs over
(−∞,∞), with the near-horizon region corresponding to r → 2M and r∗ → −∞,
where the effective potential can be well approximated as

V�(r∗) ≈ V nh
� (r∗) = �(� + 1) + 1

4M2e
exp

( r∗
2M

)
. (3.6)

For r → ∞, which corresponds to r∗ → ∞, the effective potential decreases as a
power law. For scalar fields with mass mϕ �= 0, there will be an extra term m2

ϕ inside
the parenthesis of the second term in (3.5). It will not alter the effective potential
exponential decay in the near-horizon region, nor the power law decay at infinity,
although in this case V� → m2

ϕ for r → ∞. Since the near-horizon potential (3.6) is
not qualitatively altered by the mass term, our main conclusions will also hold for
the massive case.

The effective Schrödinger equation (3.4) governs all dynamical processes involv-
ing scalar fields around Schwarzschild black holes. Scattering problems, in particu-
lar, involve certain boundary conditions at horizon and at infinity. In these problems,
typically, one starts with a incoming wave from infinity which is scattered by the
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Fig. 3.1 Aspect of the effective potential V�(r∗) given by (3.5) for some values of �. The potential
decreases exponentially in the near-horizon region (r∗ → −∞), see (3.6), and as a power law for
r∗ → ∞ (the asymptotically flat region r → ∞)

effective potential barrier (Fig. 3.1), leading to a reflected wave towards infinity and
a transmitted wave that plunges into the black hole horizon. Such a typical situation
corresponds to the following boundary conditions for u�m

u�m(r∗) =
{
Ain

�m(ω)e−iωr∗ + Aout
�m (ω)eiωr∗ , r∗ → ∞,

B in
�m(ω)e−iωr∗ , r∗ → −∞.

(3.7)

The (complex) values of ω such that Ain
�m(ω) = 0 are known to correspond to the

so-called quasinormal modes, which dominate the asymptotic evolution of non-
stationary configurations of the scalar field, see [2, 3] for comprehensive reviews
on the subject. Here, we are interested in a different field configuration. We will
consider processes which originate in the near-horizon region of the black hole and
eventually are transmitted to the infinity through the potential barrier. This situation
corresponds to the following boundary conditions

u�m(r∗) =
{

Aout
�m (ω)eiωr∗ , r∗ → ∞,

B in
�m(ω)e−iωr∗ + Bout

�m (ω)eiωr∗ , r∗ → −∞.
(3.8)

Wewill focus in the lower energy limit,whichof course corresponds to smallω,which
we assume to be positive.Wewill discuss the possibility of imaginaryω, whichwould
correspond to negative eigenvalues ω2 in the effective Schrödinger eigenproblem
(3.4), in the last section. In the low-energy limit, we expect on physical grounds
to have some oscillatory behavior in the near-horizon region and an exponential
suppression, due to the effective potential barrier, as one departs from the horizon.
It is rather natural to expect that Aout

�m → 0 (or, to be more precise, Aout
�m/Bout

�m → 0)
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for small ω, and that the near-horizon modes B in
�m and Bout

�m could be considered
as long-living in the sense that the tunneling probability to infinity is extremely
low, implying that near-horizon low-energy perturbations of the scalar fields tend
to be confined near the black hole horizon. Moreover, since they are long-living
and spatially confined, it is also natural to assume that such near-horizon modes
could in principle attain thermal equilibrium, possibly with the black hole Hawking
temperature TH = 1/8πM .

Our analysis is based on the assumption that the dynamics of the near-horizon B in
�m

and Bout
�m modes, for smallω, can bewell approximated by employing the Schrödinger

operator

H = − d2

dr2∗
+ V nh

� (r∗) (3.9)

on the domain
(−∞, rmax∗

]
, for some finite rmax∗ corresponding to a r not far from the

horizon r = 2M . This is, of course, equivalent to assume that, for small ω, Aout
�m = 0,

leading to a perfect reflection due to the effective potential barrier and, consequently,
to a confinement of the near-horizon modes. This approach closely resembles the so-
called “brick wall” proposal for the thermodynamical analysis of fields around black
holes [4], even though we are concerned here with the dynamics in the interior region
of the wall. As we will see, our approach may indeed be considered a generalization
of the standard brick wall hypothesis.

It is a well known problem in standard Quantum Mechanics that the free-particle
Schrödinger operator on the semiaxis has infinitely many self-adjoint extensions
parameterized by a phase θ ∈ U (1), see [5, 6], for instance, for further references.
We will show that similar results also hold for our problem, i.e., the Schrödinger
operator (3.9) on the domain

(−∞, rmax∗
]
has infinitely many self-adjoint extensions

determined by the boundary condition at rmax∗ . Moreover, all self-adjoint extensions
in this case will give origin to physically acceptable descriptions for the near-horizon
modes. Nevertheless, the comparison with a simplified model suggests a physical
prescription to chose the pertinent extensions.

3.2 Self-adjoint Extensions of the Effective Schrödinger
Operator

Let us introduce the dimensionless variable x = r∗/2M , in terms of which one has
the following effective Schrödinger equation for near-horizon modes

Hu�m =
(

− d2

dx2
+ c2�

4
ex

)
u�m = λ2u�m, (3.10)

where

c2� = 4

e

(
�2 + � + 1

)
(3.11)
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and λ = 2Mω, which we assume initially to be positive. (The possibility of having
imaginary λ will be discussed in the last section. ) The functions u�m are defined
over the domain (−∞, xmax ]. As we will see, our conclusions are independent of
the precise value of xmax, provided, of course, it is finite. We will drop the indices
� and m for all functions and constants hereafter. It is natural to consider the initial
domain D(H) of the effective Schrödinger operator (3.10) as C∞

0 (−∞, xmax ], i.e.,
the smooth (complex) functions u with compact support on the domain (−∞, xmax ].
Notice that H is a symmetric operator with respect to the inner product

〈v, u〉 =
∫ xmax

−∞
v̄u dx (3.12)

since
〈v,Hu〉 = 〈Hv, u〉 (3.13)

for all u, v ∈ D(H). However, it is clear too that D(H) ⊂ D(H†) since (3.13) is
valid also for functions v /∈ D(H), and this is the start point of the self-adjointness
analysis of unbounded operators on Hilbert spaces [5, 6]. On physical grounds,
we should expect D(H†) to be the set of all smooth functions with finite norm
||v|| = √〈v, v〉, or at least finite norm per length unit in order to accommodate
some possible plane wave solutions. Hence, we will consider D(H†) as the set of
smooth functions v ∈ L2 (−∞, xmax ], with the norm induced by (3.12). The von
Neumann theorem assures that H will admit self-adjoint extensions provided the
so-called deficiency index n+ and n− be equal and greater than zero, where n± are
the dimension of the deficiency subspaces N± ⊂ D(H†) defined by

N± = {
v ∈ D(H†), Hv = ±iv

}
. (3.14)

In order to determine the deficiency subspaces N±, notice that the change of variable
z = e

x
2 reduces (3.10) to a modified Bessel equation, allowing us to write down the

general solution of Hv = ±iv in terms of standard modified Bessel functions

v(x) = aIμ±

(
ce

x
2

)
+ bKμ±

(
ce

x
2

)
, (3.15)

where a and b are constants and

μ± = √
2 (1 ∓ i) . (3.16)

From the standard asymptotic expressions for modified Bessel functions [7], one has
for x → −∞

Iμ±

(
ce

x
2

)
≈

(
c
2

)√
2(1∓i)

√
2 (1 ∓ i) 


(√
2 (1 ∓ i)

)e 1∓i√
2
x (3.17)



34 A. P. Balachandran et al.

and

Kμ±

(
ce

x
2

)
≈ 1

2

( c
2

)√
2(1∓i)



(√

2 (1 ∓ i)
)
e− 1∓i√

2
x
. (3.18)

It is clear that the modified Bessel function Kμ± will give origin to solutions v /∈
D(H†) since theywill diverge exponentially for x → −∞. Hence, only the solutions
involving Iμ± are allowed, and we have n+ = n− = 1. The deficiency subspaces
N± are then vector spaces with dimension 1 generated by Iμ± , and von Neumann
theorem assures that H has a family of self-adjoint extensions parameterized by a
phase θ ∈ U (1) [5, 6].

The structure of the differential operator H is rather simple and will allow us to
determine explicitly all of its self-adjoint extensions Hα . Notice that, for smooth
u, v ∈ L2 (−∞, xmax ], one has

〈v,Hu〉 − 〈Hv, u〉 = v′(xmax)u(xmax) − v(xmax)u′(xmax), (3.19)

from where we see that H will be self-adjoint provided

v(xmax)

v′(xmax)
= u(xmax)

u′(xmax)
= α = tan

θ

2
, (3.20)

with θ ∈ (−π, π), and we have finally established

D (Hα) = D
(H†

α

) = {
v ∈ L2 (−∞, xmax ] ∣∣ v(xmax) = αv′(xmax)

}
, (3.21)

withH∞ corresponding to the boundary condition v′(xmax) = 0. It isworthy to notice
that the case H0, which corresponds to v(xmax) = 0, corresponds to the brick wall
hypothesis [4]. Our analysis, besides of involvingmore general boundary conditions,
is restricted to the other side of the wall, i.e. to themodes confined in the near-horizon
region. Notice that the differential expression for the operator Hα is independent of
α, it alters only D(H).

In order to interpret the physical meaning of the self-adjoint extensionsHα , let us
consider now the eigenproblem (3.10) for positive λ. It has also solutions in terms of
modified Bessel functions Iμ and Kμ, but now with pure imaginary order μ = 2iλ.
However, it is more convenient for our purposes here to write down the solution as
a linear combination of I2iλ and I2iλ = I−2iλ. One has

u(x) = aλ I2iλ
(
ce

x
2

)
+ bλ I−2iλ

(
ce

x
2

)
, (3.22)

with aλ and bλ constants. For x → −∞, we have [7]

u(x) ≈ aλ

(
c
2

)2iλ
2iλ
(2iλ)

eiλx − bλ

(
c
2

)−2iλ

2iλ
(−2iλ)
e−iλx , (3.23)



3 Near-Horizon Modes and Self-adjoint Extensions … 35

from where one can read the scattering coefficients in the region very close to the
horizon

B in
λ = − bλ

(
c
2

)−2iλ

2iλ
(−2iλ)
, and Bout

λ = aλ

(
c
2

)2iλ
2iλ
(2iλ)

. (3.24)

Defining the reflection coefficient as

Rλ = B in
λ

Bout
λ

= −bλ

aλ


(2iλ)


(−2iλ)

( c
2

)−4iλ
, (3.25)

we have

|Rλ| =
∣∣∣∣bλ

aλ

∣∣∣∣ . (3.26)

On the other hand, one can determine bλ/aλ from the boundary condition u(xmax) =
αu′(xmax). One has

bλ

aλ

= −χ

χ
(3.27)

where
χ = I2iλ

(
ce

1
2 x

max
)

− cα

2
e

1
2 x

max
I ′
2iλ

(
ce

1
2 x

max
)

, (3.28)

which clearly implies that |Rλ| = 1, meaning that, irrespective of the value of α,
we have always full reflection of the near-horizon modes on the effective potential
barrier, which is compatible with Aout

λ = 0 as expected. From the scattering point of
view, it is possible to implement a brick wall which effectively confine the modes in
the near-horizon region without imposing u(xmax) = 0. Moreover, any value of α is
perfectly admissible in this context, all self-adjoint extensions give origin to physi-
cally acceptable descriptions for the near-horizon modes. We will have a complete
set of (continuous) eigenvalues and eigenvectors for (3.10) for any value of α. As we
will see below, all self-adjoint extensionswill lead also to consistent thermodynamics
for the near-horizon modes.

3.2.1 Statistical Mechanics and Thermal Equilibrium

All self-adjoint extensions Hα describe confined incoming and outcoming near-
horizon modes characterized by the coefficients B in

λ and Bout
λ , see (3.24). The prob-

ability of having incoming and outcoming modes with energy λ in the horizon are,
respectively,

∣∣B in
λ

∣∣2 = sinh 2πλ

2πλ
|bλ|2,

∣∣Bout
λ

∣∣2 = sinh 2πλ

2πλ
|aλ|2. (3.29)
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Notice that for small λwe have essentially
∣∣B in

λ

∣∣2 ≈ |bλ|2 and
∣∣Bout

λ

∣∣2 ≈ |aλ|2. Let us
suppose now that the near-horizonmodes are at thermal equilibriumwith temperature
T = τ/2M (the Hawking temperature corresponds to τ = 1/4π). Assuming a grand
canonical ensemble and the detailed balance principle [8], we expect that incoming
and outcoming modes be separately at thermal equilibrium, meaning that we should
expect that both |B in

λ

∣∣2 and |Bout
λ

∣∣2 obey Boltzmann distributions and, hence, both
should be proportional to e−λ/τ . Interestingly, such detailed balance condition, which
implies that incoming and outcoming modes are equally probable in a regime of
thermal equilibrium, is compatiblewith any value ofα, i.e., all self-adjoint extensions
Hα are equivalent also from the thermal equilibrium point of view. The compatibility
is assured by the fact that |aλ|2 = |bλ|2 for any value of α, see (3.27) and (3.28).
Hence, if one of the modes is assumed to be at thermal equilibrium, by (3.29) the
other automatically be also at thermal equilibrium. It is fundamental for the detailed
balance that the boundary condition implies

bλ = eiψλaλ, (3.30)

where the phase ψλ depends on all parameters of the problem, see (3.27) and (3.28),
and particularly on the energy λ. Nevertheless, irrespective of the value of α, we have
always |aλ|2 = |bλ|2.

3.2.2 A Prescription for the Extension Selection

Rigorously, for each value of α we have a fixed domain on the Hilbert space and a
complete, physically consistent, description for the low-energy modes. We should
not mix modes with different α since they belong to different domains. The physical
interpretation of the parameter α is still rather unclear, but a simplified model can
help to shed some light here. Let us consider the well-known elementary problem of
the scattering by a rectangular barrier

V (x) =
⎧⎨
⎩

0, x < 0,
V0, 0 ≤ x ≤ L ,

0, x > L ,

(3.31)

with both V0 and L positives. We are interested on scattering problems of the type
(3.8), i.e., on solutions of the type

u(x) =
⎧⎨
⎩

B in
λ e

−iλx + Bout
λ eiλx , x < 0,

Cλe
√

V0−λ2x + Dλe−
√

V0−λ2x , 0 ≤ x ≤ L
Aout

λ eiλx , x > L ,

(3.32)

with λ2 < V0. The standard matching conditions at x = 0 and x = L read
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B in + Bout = Cλ + Dλ, (3.33)

−iλ
(
B in − Bout

) =
√
V0 − λ2(Cλ − Dλ), (3.34)

Aout
λ eiλL = Cλe

√
V0−λ2L + Dλe

−
√

V0−λ2L , (3.35)

iλAout
λ eiλL =

√
V0 − λ2

(
Cλe

√
V0−λ2L − Dλe

−
√

V0−λ2L
)

. (3.36)

After some straightforward algebra, one can evaluate the usual reflection coefficient
Rλ leading to

|Rλ|2 = V0 sinh2
√
V0 − λ2L

4λ2(V0 − λ2) + V0 sinh2
√
V0 − λ2L

. (3.37)

The problem of near-horizon modes is mimicked in this toy model by assuming
L → ∞, which implies |Rλ| → 1, i.e., full reflection leading to a “confinement” of
the solutions (3.32) in the negative semiaxis. Since |Rλ| → 1,we know that Aout

λ → 0
and hence from (3.35) and (3.36) we have that Cλ → 0, which implies the following
condition for u(x) on x = 0

u′(0) = −
√
V0 − λ2u(0). (3.38)

Thus, finally, in the low-energy limit, λ2 � V0, we have that the dynamics of the to-
tally reflect solutions for the barrier (3.31) may be viewed as an effective Schrödinger
equation for a free particle on the negative semiaxis with the boundary condition cor-
responding to α−1 = −√

V0. This simple results suggests that α−1 = −√
max V� for

the near-horizonmodes.Wewould have different self-adjoint extensions for different
angular momentum numbers �, but this is hardly a surprise since the effective poten-
tial (3.5), and consequently the Schrödinger operator (3.10), does depend explicitly
on �. It is interesting to notice that the standard brick wall condition α = 0 would
require max V� → ∞, which on the other hand demands � → ∞. Nevertheless, all
self-adjoint extensions act effectively as brick walls since we have full reflection
for all values of α. In fact, despite our prescription for the selection of α, since all
extensions are in principle physically equivalent, they might be considered in equal
footing for statistical analyses of near-horizon modes around black holes.

3.3 Final Remarks

Wewill revisit in this last section two previously noticed points. First, that our results
do not depend on the details of the Schwarzchild black hole. They will also hold for
any non-extremal, spherically symmetric, static, and asymptotically flat black hole.
The metric of a generic spherically symmetric static black hole can be cast in the
form

ds2 = − f (r)dt2 + dr2

h(r)
+ r2dΩ2. (3.39)
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The event horizon corresponds to the outermost zero of f (r), say at r = r0. The
black hole is said to be non-extremal if f ′(r0) = k > 0, and hence in the vicinity of
the horizon we have f (r) ≈ k1(r − r0). Regularity of the horizon area demands a
smooth

√−g, and from (3.39) we see also that h(r) ≈ k2(r − r0), with k2 > 0. By
using the standard decomposition (3.2) for the Klein-Gordon equation on the metric
(3.39), we arrive to a Schödinger-like equation as (3.9), but now with the effective
potential

Ṽ�(r) = �(� + 1)
f

r2
+ 1

2r

(
f ′h + f h′) (3.40)

and tortoise coordinates such that

dr∗
dr

= 1√
f h

. (3.41)

If (3.39) is assumed to be asymptotically flat, we have f (r) → 1 and h(r) → 1 for
r → ∞, and hence (3.40) decays as a power law at infinity in the same way the
Schwarzschild potential (3.5) does. On the other hand, in the near-horizon region
one has

Ṽ�(r) ≈ k1(r − r0)

(
�(� + 1)

r20
+ k2

r0

)
. (3.42)

The new tortoise coordinate (3.41) also obeys r∗ → −∞ on the horizon and, more-
over, we have

r − r0 = r0e
√
k1k2r∗ , (3.43)

from where we conclude that the effective potential (3.40) also decays exponentially
in the near-horizon region. Indeed, the aspect of the generic effective potential (3.40)
of a non-extremal, spherically symmetric, static, and asymptotically flat black hole is
qualitatively the same of the Schwarzschild case, Fig. 3.1. All the analyses we have
done follow analogously for the generic black hole case.

The second point corresponds to the imaginary λ case in (3.10). It is a well
known and curious fact that the Schrödinger equation for the free particle on the
semiaxis admits some bounded solutions, with negative energy, for certain self-
adjoint extension choices, see [5]. We have the same interesting behavior here and
they indeed correspond to the imaginary λ solutions of the eigenproblem (3.10).
For λ = σ i , the fundamental solutions of (3.10) will be linear combinations of the
modifiedBessel functions I2σ and K2σ . From the asymptotic behavior near the origin,
we can discharge the second solution. Using the standard series expansion [7] for
I2σ , we have the following solution for the eigenproblem (3.10) with eigenvalue
λ2 = −σ 2,

u(x) = aσ I2σ
(
ce

x
2

)
=

∞∑
k=0

e(k+σ)x

k!
(k + 2σ + 1)

( c
2

)2(k+σ)

, (3.44)
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where it is assumed σ > 0. It is clear from (3.44) that u(x) and all of its derivative are
monotonically increasing functions and, thus, in order to accommodate such bounded
solution for (3.10), a self-adjoint extension with α > 0 is required, which will never
be selected by our prescription. In our case, such bounded solutions do not oscillate,
see (3.2), but rather decrease exponentially. This kind of overdamped evolution for
scalar fields is quite similar to some highly damped quasinormal modes that are
known to exist for generic black holes, see [9]. This topic is now under investigation.
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Chapter 4
The Gauss Law: A Tale

A. P. Balachandran and A. F. Reyes-Lega

Abstract The Gauss law plays a basic role in gauge theories, enforcing gauge in-
variance and creating edge states and superselection sectors. This article surveys
these aspects of the Gauss law in QED, QCD and nonlinear G/H models. It is ar-
gued that nonabelian superselection rules are spontaneously broken. That is the case
with SU (3) of colour which is spontaneously broken to U (1) ×U (1). Nonlinear
G/H models are reformulated as gauge theories and the existence of edge states and
superselection sectors in these models is also established.

4.1 Introduction

This talk first discusses how locality enters the treatment of the Gauss law constraint
and the gauge transformations of its generators, focussing on theHamiltonian formal-
ism. The important role of test functions in a proper treatment of Gauss law becomes
apparent. Choices of various classes of test functions lead to various gauge groups of
which the Gauss law-generated gauge group is an invariant subgroup. There are also
gauge transformations of importance (at times loosely called “large gauge transfor-
mations”) which are not connected to identity. Observables are local. A consequence
is that they commute with all these gauge transformations. That leads naturally to
a discussion of superselection rules and anomalies: the latter are just transforma-
tions which change the superselection sector and hence are spontaneously broken.
These ideas are illustrated by examples such as axial anomalies and axial flavour
transformations of the Standard Model.
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We work with Minkowski spacetime M4 ∼= R
3 × R, whereR3 is the spatial slice.

We also work in the gauge A0 = 0. The gauge group is defined on the spatial slice
R

3.

4.2 The Structure of the Gauge Group: The Gauss Law

Let H be the group which is to be gauged. In QED, H isU (1); in QCD, it is SU (3).
The gauge group G is not H . Rather, its elements are maps g from R

3 to H .
If g, h ∈ G, the multiplication law is “point-wise”: gh is defined by (gh)(x) =
g(x)h(x), x ∈ R

3.
The Lie algebra G of the gauge group is associated with the Gauss law in quantum

theory: the latter in Dirac’s approach is a condition on state vectors |·〉:

(Di E
i + J0)|·〉 = 0. (4.1)

Here, Ei is the electric field, Di the covariant derivative and J0 is the charge density
of the matter field. If λα is a basis of generators of the Lie algebra H of H , we can
write

Di E
i = ∂i E

i + i Aα
i E

i,β [λα, λβ ], Ei = Ei,αλα, Ai = Aα
i λα, J0 = Jα

0 λα, (4.2)

where Aα
i , E

j,β are canonically conjugate: at equal times,

[Aα
i (x), E

j,β(y)] = iδ j
i δ

3(x − y)I. (4.3)

These expressions are also valid for QED (H = U (1)).
The RHS of (4.3) is a distribution. Therefore, Aα

i , E
j,β are operator-valued distri-

butions. Derivatives of distributions are defined by smearing themwith test functions
and transferring derivatives to test functions. It turns out to be important to do so for
the Gauss law (4.1).

Thus, let S∞
0 (R3) define H -valued test functions Λ = Λαλα on R

3, Λα being
real, infinitely differentiable and of fast decrease at infinity. (We will not be precise
on the rate of decrease. It is to be adapted to the problem at hand.) We then write
(4.1) as

Tr
∫ [−(DiΛ)Ei + ΛJ0

] |·〉 = 0. (4.4)

If Tr λαλβ = 2δαβ , we can also write (4.1) as

∫ [−(DiΛ)αEi,α + Λα Jα
0

] |·〉 = 0. (4.5)
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In the Gauss law (4.4), it is important to choose Λα to vanish at infinity. It is only
then that we can recover the classical Gauss law Di Ei + J0 = 0 by partial integration
from (4.4) without generating surface terms.

4.3 The Group G∞
0

The Gauss law generates infinitesimal gauge transformations dependent on x . We
can see this as follows. Let

[λα, λβ] = 2icγ

αβλγ . (4.6)

Then,

Di E
i = ∂i E

i,αλα + 2i Aα
i E

i,βcγ

αβλγ , Di E
i,γ = ∂i E

i,γ − 2Aα
i E

i,βcγ

αβ, (4.7)

so that, for example,

[Di E
i,γ (x), E j,ρ(y)] = −2i E j,β(x)cγ

ρβδ3(x − y). (4.8)

This gives, for the smeared Gauss law,

[∫ [−(DiΛ)αEi,α + Λα Jα
0

]
, E j,β(y)

]
= 2iΛγ (y)cγ

ρβE
j,ρ(y), (4.9)

which is an infinitesimal y-dependent action of H .
Now, Λα(x) → 0 as |x | → ∞, so that the Gauss law acts trivially at infinity.

Hence, the groupG∞
0 it generates on exponentiation acts as identity at infinity (as indi-

cated by the superscript∞). The elements ofG∞
0 are also connected to identity as the

subscript 0 indicates, since they are obtained by exponentiating aLie algebra element.
If U (h) is the operator representing h ∈ G∞

0 , we conclude that on physical
states |·〉,

U (h)|·〉 = |·〉. (4.10)

4.4 The Group G0: the Emergence of Global Groups

Let us denote the smeared Gauss law operator as G(Λ):

G(Λ) =
∫

Tr
[−(DiΛ)Ei + ΛJ0

]
, Λ ∈ S∞

0 , G(Λ)|·〉 = 0. (4.11)

We now consider more general operators Q(μ), where the test functions are not
required to vanish at infinity:
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Q(μ) =
∫

Tr
[−(Diμ)Ei + μJ0

]
, μ ∈ C∞. (4.12)

If

μ(x)
∣∣|x |→∞ = μ ∈ R, (4.13)

there is no reason for Q(μ) to vanish on physical states. We call the group that the
Q(μ)’s generate as G0.

Now, G∞
0 is a normal subgroup og G0. That follows from

[μ,Λ] = 2iμαΛβcγ

αβλγ ∈ S∞
0 (4.14)

for μ = μαλα,Λ = Λβλβ , since the RHS tends to zero as |x | → ∞.
Consider the quotient group

Ĥ = G0/G
∞
0 . (4.15)

It is a group that acts non-trivially on quantum states.
Let us assume that (μ − μ∞) ∈ S∞

0 , that is, that μ approaches its asymptotic
value rapidly. Then, if g(μ) ∈ G0, U (g(μ))|·〉 depends only on μ∞. That is because
if μ1,∞ = μ2,∞, (μ1 − μ2) ∈ S∞

0 and G(μ1 − μ2)|·〉 = 0.
The group Ĥ is in fact isomorphic to H in simple cases like QED or QCD. In

these cases, we can choose μ(x) = μ∞ for all x and then

Q(μ) =
∫

Trμ∞
(−Aα

i E
i,β[λα, λβ] + J0

)
(4.16)

is the familiar H -generator after a normalisation of μ∞, which for QED is μ∞ =
1. For QCD, we choose eight μ∞’s, μα

∞,βλα (β = 1, 2, . . . , 8), where μα
∞,β = δα

β .
Equation (4.16) shows that non-abelian gluons carry non-abelian charges, as the first
term in (4.16) is not zero. In QED, instead, the first term is zero, photons having no
charge.

But Ĥ can differ from H . A good example is the’t Hooft-Polyakov model, where
H = U (1) while, as Witten has shown [1], Ĥ = R in the presence of magnetic
monopoles. That leads to fractional charges for dyons.

4.5 The Sky Group Ĝ0

We can now go one step further and consider the boundary condition

μ(x) = μ(|x|x̂) −−−−→|x|→∞ μ̂(x̂). (4.17)
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That is, allow μ to approach an angle-dependent limit at infinity. (We are “blowing
up” infinity.) Then, we get the “Sky” group Ĝ0 [2, 3] with generators

Q̂(μ̂) =
∫
S2∞

Tr
[−(Di μ̂)Ei + μ̂J0

]
. (4.18)

This group is of importance for discussing infrared effects [2].

4.6 Winding Number Gauge Transformations

These are gauge transformations h which approach I at infinity. Hence, they can be
regarded as maps from S3 to H . If h has winding number other than zero, then h
is a winding number gauge transformation. We refer to [3] for the definition and
properties of such maps h.

If H is U (1) as in QED, then there is no h with non-zero winding number:
Π3(U (1)g) = 0.

If H is a compact, simple Lie group like SU (N ), there are such transformations.
Let h1 be one such typical transformation with winding number one. Then, powers
of h1, namely hk1, k ∈ Z, generate the group Z.

If G∞
W is the gauge group with elements becoming identity at infinity, but not

necessarily connected to identity, then the winding number group is G∞
W /G∞

0 .
We can relax the condition at infinity and consider ĜW . With ĜW , we allow angle-

dependence at infinity. This group may not be connected to identity. Then again
we have that ĜW/Ĝ0 (the subscript 0 as usual denoting the component connected to
identity) is the winding number group:

ĜW/Ĝ0 ≈ GW/G0. (4.19)

The winding number group (“deck transformations”) is responsible for the θ -vacua
of QCD.

An important point is that in QCD and SU (N ) gauge theories, we cannot write
winding number operators in terms of field variables like A and E . (An exception
occurs in the’t Hooft-Polyakov model mentioned above.) Still, they are well-defined
as automorphisms of local observables. There may be cases where they are not
implementable as unitary operators, leading to their “spontaneous” breakdown.

We now have a list of various gauge groups with their mutual relations:

ĜW ⊃ GW ⊃ G0 ⊃ G∞
0 = Gauss law group

∪ ∪ ∪
Ĝ∞
W = G∞

W ⊃ G∞
0

(4.20)
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In each non-trivial inclusion here, the subgroup is normal. Only the Gauss law group
necessarily acts as identity on quantum states. Also, groups with index W do not
have operators given by the canonical approach in QCD.

4.7 On Local Observables and Gauge Invariance

Let A be the algebra of local observables. If ϕ is a local quantum field of the
Lagrangian approach and f is a test function with compact support K , then

ϕ( f ) =
∫

d3x f (x)ϕ(x) (4.21)

or, better, eiϕ( f ) is an element of A . Here, for illustration, we assume that ϕ is a
scalar. We can exponentiate ϕ( f ) in (4.21) to get a unitary (and hence bounded)
operator.

In our approach, K is a spatial region. A more rigorous formulation will require
K to be a spacetime region [4].

If a ∈ A , thought of as an operator in a Hilbert spaceH of physical states, then
we have that

aU (h) = U (h)a if h ∈ G∞
0 . (4.22)

That is because we want both |·〉 and a|·〉 to be in the kernel of the Gauss law. Thus,

[a,G(Λ)] = 0 if Λ ∈ S∞
0 . (4.23)

The result (4.22) follows from here on exponentiation of G(Λ).
But a is local. An important consequence is then that a commutes with all the

G -groups.
Let A ′ be the commutant of A and CGW the group algebra of GW . Then, the

above claim means the following: because of locality and the Gauss law constraint,
we have that

A ′ ⊇ CGW . (4.24)

It is enough to show the infinitesimal version of this result for all G ’s except ĜW ’s
(Towards the end of this section, we consider CGW ). For the former, there is the
generator Q(μ). Let ϕ( f ) be a local field supported in a compact region K . The
commutator [Q(μ), ϕ( f )] depends only on μ

∣∣
K , the restriction of μ to K , because

of locality. That is, if μ
∣∣
K
and ν

∣∣
K
are equal, then

[Q(μ) − Q(ν), ϕ( f )] = 0. (4.25)
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So let us extend μ
∣∣
K to a ν ∈ C∞

0 in any manner with the only condition ν
∣∣
K = μ

∣∣
K .

Then,

[Q(μ), ϕ( f )] = [Q(ν), ϕ( f )] = [G(ν), ϕ( f )] = 0. (4.26)

The second equality holds true because μ, ν ∈ C∞
0 . This proves the result.

The proof for winding number transformation is along the same lines. If g ∈ ĜW ,
then U (g)ϕ( f )U−1(g) depends only on g

∣∣
K and g−1

∣∣
K . We now extend g−1

∣∣
K

outside K , so that it has globally zero winding number and belongs to G∞
0 . If the

extended gauge transformation is h, then U (h) ∈ A ′. Hence, U (g) ∈ A ′ too. We
can thus conclude that ĜW ∈ A ′.

4.8 On Superselection Groups

These are the transformations commutingwithA . Hence, the group ĜW is associated
with the superselection group.

The subgroup G∞
0 of Gauss law becomes I on quantum states. It is normal in

ĜW . Hence, it is more appropriate to identify ĜW/G∞
0 or a subgroup thereof with the

superselection group.
The group algebraC(ĜW/G∞

0 ) commutes withA :C(ĜW/G∞
0 ) ∈ A , it is a Hopf

algebra. For more discussions on Hopf algebras, see [5]. We can also work with
C(ĜW/G∞

0 ) to illustrate superselection theory.
Subgroups of ĜW/G∞

0 give us the familiar superselection rules of QED and QCD.
That is because of the following. Local observables cannot change the irreducible
representation (IRR) ρ of ĜW/G∞

0 on the Hilbert space Hρ (we now label H also
with ρ): AHρ ⊆ Hρ . Hence, by definition, ĜW/G∞

0 is superselected.
More will be said below when the group in question is non-abelian. We now

illustrate these remarks.

4.8.1 Charge and Colour

InQED,G0/G
∞
0 = U (1). Thus, charge is superselected. So is colour, sinceG0/G

∞
0 =

SU (3)c in QCD.
There is a subtlety about colour because it is non-abelian. In a unitary IRR (UIRR),

as Dirac has explained, we can diagonalise a maximal commuting set (CCS) of
operators from its group algebra CSU (3). A choice for the CCS is C2,C3, I, I3,Y ,
where C2,C3 are the quadratic and cubic Casimir operators, I is isospin and I3,Y
are the operators representing λ3/2 and λ8/

√
3 of the Gell-Mann matrices. Thus, a

vector state in a UIRR ρ is characterised by the eigenvalues c2, c3, i, i3, y of these
operators:
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Hρ : |c2, c3, i, i3, y, ·〉. (4.27)

No operator of A will change these eigenvalues. But a generic element of SU (3)c
(for example, Uα and Vα , the U− and V− spin operators of [6]) will change i3, y.
Hence, they cannot be implemented on Hρ .
Operators changingHρ are said to be spontaneously broken or anomalous. Hence, in
QCD, SU (3)c of colour is spontaneously broken to S

(
U (1)I3 ×U (1)Y

)
, generated

by I3,Y [2]. Analogous results have been found for the ethylene molecule [7] and
for colour breaking by the non-abelian monopoles of grand unified theories [8–11].

Remark: We make no distinction between spontaneous symmetry breaking and
symmetry breaking by anomalies. Both are of the same origin: they change the
domain of the observables A . In the above, anomalous operators change Hρ . (It
was Esteve who first discussed anomalies as transformations changing the domain
of the Hamiltonian [12].)

4.8.2 QCD θ-vacua

These originate in GW . It is enough to consider G∞
W . Let T be a winding number one

transformation. Then,

U (T )a = aU (T ) if a ∈ A (4.28)

because of locality. It also preserves the Gauss law constraint: if G(Λ)|·〉 = 0, then
G(Λ)U (T )|·〉 = 0. Hence, in an IRR of A , we can diagonalise U (T ).

For H = SU (2), a typical winding number one transformation is

T (x) = cos θ(r) + iτ · x̂ sin θ(r), r = |x|, θ(0) = −π, θ(∞) = 0.(4.29)

If T has winding number one, T k has winding number k. So the group it generates
isZ. The UIRR’s ofZ are labelled by the points on a circle S1 = {eiθ }. If the quantum
state is characterised by ρθ : T → U (T ) = eiθ , we have that

U (T )|eiθ , . . .〉 = eiθ |eiθ , . . .〉. (4.30)

These are the θ -states of QCD. There is an extensive literature on θ -states.

4.8.3 The Sky Group

This group emerged from the study of infrared problems in QED. The name was
suggested by the Scri or BMS group of Bondi, Metzner and Sachs [13, 14] and the
Spi group of Ashtekar [15].
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The Sky group G has generators Q(μ), where

μ(x) = μ(r n̂) −−−→
r→∞ μ(n̂), (4.31)

and where μ(n̂) need not be zero.
There is anoperator, an intertwiner,V (ω)whichmaps state vectorswithQ(μ) = 0

to ones where it is not zero. Thus, there are the sectors with “in” state vectors (cf. [16,
17] and references therein)

eqn
∫
d3x[A−

i (x)ω+
i (x)−A+

i (x)ω−
i (x)]|n, P, ·〉 := |n, P, ω, ·〉, (4.32)

|n, P, 0, ·〉 ≡ |n, P, ·〉, qn �= 0 (4.33)

created by the infrared photons. The first operator in (4.32) gives the intertwiner. Here
A±
i are the positive and negative frequency parts of the electromagnetic potential in

the Coulomb gauge, and the functions ω+
i , ω

−
i = ω̄+

i are transverse:

∂iω
±
i (x) = 0, (4.34)

Also they do not vanish fast as we approach infinity:

lim
r→∞ r2 x̂i ωi (x)

± �= 0. (4.35)

One such typical ω+
i has the Fourier transform

ω̂+
i (k) =

∫
d3x eik·xω+

i (x) = 1

P · k + iε
(Pi − P · k̂ k̂i ) (4.36)

(with ε decreasing to zero as usual). The momentum Pμ is the total momentum of
the charged system. (We have not shown the individual momenta and charges of
which P and qn are composed as they are not important for our considerations.) The
important point here is that ω̂+

i is not square-integrable:

〈ω,ω〉 := lim
|k′|→0

∫ ∞

|k′|
d3k

2|k| |ω̂
+
i (k)|2 = ∞. (4.37)

It is then a theorem [18] that the representation ofA built on (4.32) is superselected:
it is not the Fock space representation.

V (ω) commutes with the Gauss law operator G(Λ). But that is not the case with
Q(μ):

eiQ(μ)V (ω) = exp

[
qn lim

r2→∞

∫
S2∞

dΩ r2μ(n̂)n̂i (ω
+
i − ω−

i )(r n̂)

]
V (ω)eiQ(μ), (4.38)

where S2∞ is the “sphere” at infinity (we are “blowing up” infinity).
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The algebra defined by the relation (4.38) is useful to study the infrared effects in
gauge theories and their phenomenology [19].

There are non-abelian and gravitational generalisations of V (ω) [19]
If |·〉 is a vector in the Fock space, then V (ω)|·〉 is not in the Fock space since ωi

is not square-integrable:

∫
d3x |ωi (x)|2 = ∞. (4.39)

Using this fact, one proves that Lorentz invariance is broken: boost operators cannot
be defined on V (ω)|·〉. Colour and SL(2,C) gauge symmetry are similarly broken.
The discussion of these issues may be found in papers.

4.9 Global Symmetries: Lorentz and Flavour Groups

Apart from gauge groups, whose elements are spacetime dependent, we have in
addition global symmetries. They transform all local fields and cannot be localised
in a compact region K . A simple example is spatial translation. For a free scalar field,
its generators are

Pi = 1

2

∫
d3x [ϕ(x)∂iΠ(x)] , [ϕ(x),Π(y)]

∣∣∣
x0=y0

= iδ3(x − y), (4.40)

as deduced from the standardLagrangian. They involve a density such asϕ(x)∂iΠ(x)
integrated over all space. For these reasons, they are not local. We call them global.

On local observables A , global symmetries act as automorphisms. Unitary ele-
ments ofA also act as automorphisms ofA . The latter generate the inner automor-
phism group Inn A . If Aut A is the group of all automorphisms ofA , then Inn A
is a normal subgroup of Aut A . Global symmetries are elements of the quotient
group Aut A /Inn A , which is called the outer automorphism group Out A .

There is no guarantee that global symmetries, that is Out A , can be implemented
by operators in an IRR ρ of A on Hρ . Superselection operators are multiples of
identity on Hρ and it can happen that elements of Out A change ρ. In that case,
they are spontaneously broken. We know many such examples. We list a few below.

4.9.1 Axial U(1) Anomaly

In quantum physics, we seek a representation ofA which preserves the domainDH

of the Hamiltonian: ADH ⊆ DH . This is important so that we have well-defined
time evolution.
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But, as Esteve discusses [12], axialU (1) transformationsU (1)A changeDH , that
is, the IRR of A . Hence, they are spontaneously broken. That is so in QED and the
Standard Model.

4.9.2 The Axial Flavour Anomaly

The flavour group in QCD at the Lagrangian level is U (N f )L ×U (N f )R (upto dis-
crete groups) acting on the left- and right-handed quarks. If (g, h) is a transformation
of this group, they are interchanged by parity P:

P : (g, h) → (h, g). (4.41)

Vector transformations (g, g) commute with P . The axial transformations (g, g−1)

do not. The latter are all anomalous.

4.9.3 How QED Breaks Lorentz Invariance

A very striking example occurs in QED, where, as proved by Buchholz1 [20] and
Fröhlich, Morchio and Strocchi [21, 22], infrared effects dress the charged particle
states by a V (ω) as in [21, 22], ω being known, and change the Fock space to a
non-Fock space. In this new representation space, boost generators and hence the
Lorentz group are spontaneously broken.2 For an important generalization of these
works, see [23].

There are extensions of this result to QCD [16].

4.9.4 The Higgs Field

The Higgs field is of standard use for the spontaneous breaking of symmetry. We
discuss it briefly in the context of the group U (1), such as in superconductivity.

So let φ be a charged Higgs field approaching the constant value φ∞ at spatial
infinity. If a is a local observable, then

1In [20], Buchholz has proven that Lorentz transformations must be spontaneously broken in elec-
trically charged sectors and also that electrically charged states cannot be eigenstates of the mass
operators.
2Fröhlich, Morchio and Strocchi base their work on the asymptotic fields (relying on Buchholz’s
collision theory for massless Bosons [24]). In [25], Buchholz relates the problem to the interacting
(time zero) fields, i.e. Gauss law.
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lim
r→∞[a, φ(x)] = 0, r = |x|, (4.42)

so that φ∞ is superselected.
We consider U (1) as a gauge symmetry. So, if u ∈ U (1), then

U (u)a = aU (u) (4.43)

and U (u) too commutes with all local observables.
But

U−1(u)φ(x)U (u) = uφ(x), (4.44)

so that U (u) and φ∞ do not commute. These superselected operators form a non-
abelian group. Each superselected sector, as discussed earlier, can be labelled by the
eigenvalues of only one of them.

But we want to preserve the domain DH of the Hamiltonian H . The latter has a
potential V (φ) which is zero only at φ∞. That means that in DH , the operator for
φ(x) must approach φ∞ as r → ∞. Hence, we label the superselection sector by
φ∞. But then U (u) changes φ∞ to uφ∞ and is spontaneously broken.

It is possible to express φ∞ in terms of the field φ smeared with a test function
and its expectation value for vectors |·〉 ∈ DH .

4.10 Non-linear Models and Edge Excitations

Consider a model for Goldstone modes with gauge group G which is spontaneously
broken to H ⊂ G. Then the model describes Goldstone modes with target space
G/H . If themodel can be described as a gauge theory, thenwe can apply the previous
discussion. This can be done as follows [26]. We fix an orthonormal basis of the Lie
algebra of G:

T (α), α = 1, 2, . . . , |H |, (4.45)

S(i), remaining generators of G. (4.46)

Then under an action of h ∈ H ,

hT (α)h−1 = T (β)hβα, (4.47)

hS(i)h−1 = S( j)Dji (h). (4.48)

Set
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Aμ(g) = T (α)Tr T (α)g−1(x)∂μg(x), (4.49)

Bμ(g) = S(i)Tr S(i)g−1(x)∂μg(x). (4.50)

Then under the right action of H ,

Aμ(gh) = h−1Aμ(g)h + h−1∂muh, (4.51)

Bμ(gh) = h−1Bμ(g)h, (4.52)

i.e. Aμ is a connection while Bμ is a tensor field.
For gauge group H � h : Rn → H , we can write Lagrangian densities like

L1 = −λTr Bμ(g)Bμ(g), (4.53)

or
L2 = −λTr Fμν(A)Fμν(A). (4.54)

They reduce to standard σ -model Lagrangians, e.g. with G = SU (2), H = U (1), so
that G/H = S2. Explicitly writing:

g(x)σ3g
−1(x) = σαϕα(x) ⇒ ϕα(x)ϕα(x) = 1,

we get

L1 ∼ −λ(∂μϕα)(∂μϕα),

L2 ∼ −εαβγ λ(ϕα∂μϕβ∂νϕγ )2. (4.55)

But (non-local) observables need be invariant only under

H∞ = {h ∈ H | h∞(x̂) = lim
r→∞ h(r x̂) = 1}. (4.56)

Can we find such observables invariant only underH∞ and not underH ? Consider
the Wilson line

W (g, x, e) = exp
∫ x

∞
dλeμAμ(g(x + λe)), (4.57)

where eμ is a spacelike unit vector. Under gauge transformation by h ∈ H ,

W (g, x, e) → h∞(x̂)W (g, x, e)h−1(x). (4.58)

Hence
B̃μ(g, x, e) ≡ W (g, x, e)Bμ(x)[W (g, x, e)]−1 (4.59)

is invariant by small, but not by large gauge transformations. B̃μ(g, x, e) is not a
local field. B̃μ(g, x, e)|x〉 is a state with edge excitations. How do we see them?
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Perhaps through instantons. Thus we have the θ -vacuum term

θ

32π2

∫
TrF(A) ∧ F(A)

thatwe can add to the action. There are also instanton solutions of F = ∗F (for certain
groups, the ADHM method works).But this topological term cannot be reduced to
an integral of standard G/H -model fields. It violates CP invariance and can induce
electric dipole moment. The present limit is given by

θ ≤ 10−10.

Some of these ideas extend to self-dual gravity as well.
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Chapter 5
Quantum Control at the Boundary

A. Balmaseda and J. M. Pérez-Pardo

Abstract We present a scheme for controlling the state of a quantum system by
modifying the boundary conditions. This constitutes an infinite-dimensional control
problem. We provide conditions for the existence of solutions of the dynamics and
prove that this system is approximately controllable.

5.1 Introduction

The development of quantum technologies is of full demanding challenges. From a
technological point of view there is the difficulty ofmanipulating coherently quantum
systems made of few particles while maintaining the quantum correlations. This
implies that quantum systems have to be kept under very low temperatures and
interaction with them has to be performed very fast in order to avoid decoherence [4].

A basic requirement for an effective quantum information processing system,
quantum sensor or simulator is the ability to control the quantum state of the system
at the individual level. Geometrical control theory has provided the mathematical
background to deal with quantum spin control. Khaneja et al. showed how to ob-
tain efficient RF pulse trains for two-spin and three-spin NMR systems by finding
sub-Riemannian geodesics on a quotient space of SU (4) [31] and the subsequent
numerical implementations [32]. We should also mention [38] for a geometric con-
trol study of quantum spin systems and [42] for an optimal control discussion of
blocks of quantum algorithms (see also [12, Chaps. 5, 6] and the recent review of
geometric optimal control for quantum systems in NMR by Bonnard et al. [8] and
references therein). More recently a class of optimal control problems for coupled
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spin systems using geometrical tools was described in [13]. A review on the current
state-of-the-art on quantum optimal control can be found in [23].

However, geometric control theory and its extension to optimal control prob-
lems suffers serious drawbacks when extended to genuine infinite dimensional quan-
tum systems. Mainly because of the intrinsic mathematical difficulties of infinite-
dimensional geometry. Nevertheless, it has been applied to the finite dimensional
approximations used to model the aforementioned quantum devices such as Ion
Traps, NMR quantum computers and others. One of the sources of decoherence
comes precisely by the neglection of the highest energy levels in order to perform
the finite-dimensional approximations [20].

Only few results on controllability of linear systems are known (see for instance
Beauchard et al. [5, 6], and Chambrion et al. [11] and references therein). We should
also mention that alternative to geometric control theory is the use of quadrature
operators in control theory, cf. [43]. There, the conventional approach is introduction
of quadrature operators, and then studying and controlling the dynamics of these
quadratures, for example through their Wigner functions (see for instance [2, 10,
22]).

The quantum control at the boundary (QCB) method is a radically different ap-
proach to the problem of controlling the state of a qubit. Instead of seeking the
control of the quantum state by directly interacting with it using external magnetic
or electric fields, the control of the state will be achieved by manipulating the bound-
ary conditions of the system. The spectrum of a quantum system, for instance an
electron moving in a box, depends on the boundary conditions imposed on it. The
typical situation is to consider either Dirichlet or Neumann boundary conditions. A
modification of such boundary conditions modifies the state of the system allowing
for its manipulation and, eventually, its control [26]. Addressing the problem from
the genuine infinite dimensional setting provides a natural way of avoiding sources
of decoherence.

The QCB paradigm has been used to show how to generate entangled states in
composite systems by suitable modifications of the boundary conditions [30]. The
relation of QCB and topology change has been explored in [39] and recently used
to describe the physical properties of systems with moving walls [16–19, 21], but
in spite of its intrinsic interest some basic issues such as the QCB controllability of
simple systems has never been addressed.

In developing the theory it will be shown first, by means of a suitable chosen time-
dependent unitary transformation, that the variation of the boundary conditions of the
system can be implemented as a time-dependent family of Hamiltonian operators,
an idea that was already anticipated in [39]. The particular instance of quasi-periodic
boundary conditionswill beworked out explicitly and it will be shown that the system
reduces to a linear system similar to those studied by Chambrion et al. [11].

This article is organised as follows. In Sect. 5.2 we review the notions of con-
trollability in quantum systems that we will need to address the problem. The main
difficulties will also be presented. In Sect. 5.3 we introduce the magnetic Laplacian.
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This provides a simplemodel wherewewill be able to implement the scheme ofQCB
and prove controllability rigorously. Sections5.4 and 5.5 are devoted respectively to
prove thewell-posedness of the dynamics in the particular system of quantum control
at the boundary considered and its approximate controllability.

5.2 Control of Quantum Systems

As stated in the introduction, one of the main objectives of the research presented
in this article is to show that the paradigm of quantum control at the boundary is
feasible. That is, we will prove controllability, in the sense that we are going to
introduce later in this section, of a quantum system by means of modifications of
the boundary conditions. Before doing that, let us review briefly some important
concepts of the standard theory of control.

To fix the ideas in the context of QuantumControl, cf. [12], consider the following
setting. The space of pure states is given by the complex projective space , P(H),
of the separable Hilbert space H, [9, 15, 24]. In what follows we will denote the
norm and scalar product of the Hilbert space by the usual notation, i.e. ‖·‖ and 〈·, ·〉
respectively.

Evolution in a quantum system is governed in general by the time-dependent
Schrödinger Equation. The final purpose of Control Theory is to study how to intro-
duce an interaction into a system in order to be able to drive the state of the system
from a given initial state to a desired target state. A simple, yet convenient, setting
to define quantum control is to consider a time-dependent Hamiltonian of the form

H (t) = H0 +
n∑

i=1

fi(t)Hi , (5.1)

where H0 and Hi are self-adjoint operators on the Hilbert space and where fi(t) ∈ C
are one variable functions on a convenient space of functions. The latter has to be
specified and depends on the particular problem that one wants to address. Since
Control Theory is devised ultimately to be applied to some concrete experimental
setting, the limitations or restrictions to be imposed on the family of controls C will
come from the experimental setup. For simplicity let us consider for the moment that
C ≡ C∞(R), the space of smooth and real-valued functions. Given an initial state
Ψ0 ∈ P(H) and a target state ΨT ∈ P(H), the problem of controllability consists on
determining if there exists a choice of the functions fi(t) ∈ C such that the solution
of the time-dependent Schrödinger Equation is such that the initial state Ψ0 is driven
to the target state ΨT in a time T > 0. In order to give a more precise definition of
controllability let us introduce the reachable set.
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Definition 1 Let Ψ0 ∈ P(H), fi(t) ∈ C, i = 1, . . . , n and let Ψ (t) be the solution of
the time dependent Schrödinger Equation

i
d

dt
Ψ (t) = H (t)Ψ (t).

The reachable set RΨ0(T ) of the state Ψ0 at time T ∈ R is defined to be

RΨ0 (T ) = {Ψ ∈ P(H) | Ψ = Ψ (t), t < T ∈ R, Ψ (0) = Ψ0, fi(t) ∈ C, i = 1, . . . , n} .

That is, the reachable set of the state Ψ0 is the set of all those states that can be
accessed starting at the state Ψ0 under all the possible evolutions described by the
family of controls. We postpone until later in this section the considerations of ex-
istence of solutions of this time-dependent Schrödinger Equation. For the definition
of reachable set it is implicitly assumed that the initial value problem is well-posed.
We are ready now to define the notion of exact controllability.

Definition 2 Let C be a family of controls, let the quantum system defined by the
space of states P(H) and evolution determined by the time-dependent Schrödinger
Equation

i
d

dt
Ψ (t) = H (t)Ψ (t),

with Hamiltonian H (t) = H0 + ∑n
i=1 fi(t)Hi, fi(t) ∈ C, i = 1, . . . , n. The quantum

system is said to be exactly controllable if for all Ψ0 ∈ P(H) one has that

⋃

T∈R

RΨ0(T ) = P(H).

This notion is also called in the literature pure state controllability. We are only
interested in the evolution of pure states Ψ ∈ P(H), in contrast to the more general
density states.

Let us say now that the problem of controllability is a problem of existence
of controls such that any target state can be achieved. The problem of (optimal)
determination of the controls will not be considered here.

In general, the quantum systems are defined on infinite-dimensional Hilbert
spaces. Moreover, typically the Hamiltonians are unbounded operators acting on
the Hilbert space of the system. Unbounded operators are not continuous opera-
tors on the Hilbert space and therefore, existence of solutions of the time-dependent
Schrödinger Equation is compromised. For instance, the domains of the operators
may depend also on time, and the range of the operators may not preserve the do-
mains. These facts introduce a set of stringent conditions on the families of available
Hamiltonians, and thus of available controls, in order to define well-posed control
problems. One of the aims of this article is to show that the setting of quantum control
at the boundary is feasible. In particular this implies guaranteeing the existence of
solutions of the evolution equation.
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Quantum systems of mechanical type are governed by Hamiltonians defined by
differential operators on Riemannian manifolds. Typically, the Laplace-Beltrami op-
erator or other second order differential operator related to it. If the Riemannian
manifold has boundaries those operators are in general symmetric operators but not
self-adjoint, cf. [41] or [29] and references therein for an introduction to the topic.
Each self-adjoint extension describes a different physical situation. Consider, for
example, the case of the Laplace operator on a compact interval. One can consider
Dirichlet boundary conditions or Neumann boundary conditions. These two oper-
ators define two completely different self-adjoint extensions of the same operator
and thus describe completely different evolutions. The space of self-adjoint exten-
sions of a symmetric, second order differential operator (in any dimension) can be
characterised by certain families of boundary conditions, cf. [25, 27] and references
therein.

We will consider the use of these spaces of boundary conditions as spaces of
controls. This idea was firstly introduced in [26]. The appearance of the controls
in the Hamiltonian are now more subtle than they are in (5.1) since they will not
appear directly in the functional form of the operator, but will appear in the boundary
conditions that define the different domains of the operators at every instant of time.
That is, we are going to consider families of Hamiltonians (H ,D(fi)), fi(t) ∈ C,
where the space of controls C is now the space of self-adjoint extensions (or a subset
of it) of the symmetric operator H .

From these previous considerations it follows that the setting of quantum control
at the boundary requires of infinite-dimensional Hilbert spaces and unbounded oper-
ators. Unfortunately, the usual notions of control introduced at the beginning of this
section are not suitable to handle the infinite dimensional situation. In particular, they
turn out be too strict and there is the need to introduce a notion of controllability that
is slightly weaker. Consider the quantum control system defined by the Harmonic
oscillator over the real line

H0 = −1

2

d2

dx2
+ 1

2
x2 , H1 = x , C ≡ C∞(t) ,

such thatH (t) = H0 + f (t)H1, f (t) ∈ C. This quantum control system is not exactly
controllable, see for instance [37]. However, every finite dimensional truncation
up to the first n lowest eigensates, whose Hamiltonians are now given by Hermitean
matrices H̃0, H̃1 ∈ M (C)n×n is exactly controllable, [40]. This situation motivates
the definition of approximate controllability.

Definition 3 Let Ψ0, ΨT ∈ P(H ). Let Bε(ΨT ) be the ball of radius ε > 0 centred at
ΨT . We will say that a quantum system is approximately controllable if for every
ε > 0 there exists a T > 0 such that

RΨ0(T ) ∩ Bε(ΨT ) 	= ∅.

That is, a quantum system is approximately controllable if there is a finite time T
such that the reachable set RΨ0(T ) of the state Ψ0 intersects with a neighbourhood
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of radius ε of the state ΨT . Therefore, one can come as close to the target state ΨT

as desired. It is remarkable that approximate controllability has been proven , cf.
[11], for linear systems with one control (n = 1) under suitable assumptions on the
spectral properties of the operatorsH0 andH1. On Sect. 5.5 we will rely on that result
to prove controllability for a particular instance of quantum control at the boundary.
We should mention here that more general notions of controllability, suitable for
quantum systems, are also possible, e.g. [28].

5.3 Magnetic Laplacian

During the rest of this work we will concentrate in one particular class of quantum
systems, namely magnetic Laplacians in one dimension. The reason behind this
choice is twofold. On one hand these systems are simple enough such that we will
be able to prove rigorously the existence of dynamics and to address the boundary
controllability problem. On the other hand, this simple system can be implemented
physically, thus opening an interesting path to devise applications of the scheme of
quantum control at the boundary to quantum computation and quantum information.
Let L ⊂ R be a compact interval that for convenience we will consider to be L =
[0, l]. The Hamiltonian of the magnetic Laplacian takes the form:

H = −
(
d

dx
− iA(x)

)2

=: −D2,

where A ∈ H1(L) is a function in the Sobolev space of order 1 and is called the
magnetic potential.

From its definition it canbe seen the similarity of thisHamiltonianwith theLaplace
operator. This operator describes the so called minimal coupling of an electrically
charged particle with amagnetic potential. This justifies the name ofmagnetic Lapla-
cian. It is a second order differential operator and we need to determine a domain
for it in order to have it well defined. Following [3, 27, 34] we will identify the
domains of self-adjointness by looking for maximal domains where the boundary
term of Green’s formula vanishes identically. This boundary term reads in this case:

iΣ(Φ,Ψ ) := i(〈Ψ,D2Φ〉 − 〈D2Ψ,Φ〉) = 〈Ψ + i
�

DΨ ,Φ + i
�

DΦ〉∂L
−〈Ψ − i

�

DΨ ,Φ − i
�

DΦ〉∂L.

The underline notation stands for restrictions to the boundary, while the arrows
over the symbolsmean that the restriction to the boundary is taken having into account
the orientation. That is, derivatives are taken with orientation pointing outwards to
the boundary as well as the restriction to the boundary of the potentials (they are
one-forms evaluated on the normal vector to the boundary). The subindex ∂Lmeans
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that it is considered the scalar product of the Hilbert space induced at the boundary of
L. Therefore, cf. [3], the self-adjoint extensions ofD2 are parametrized by an unitary
operator U ∈ U(L2(∂L)) with

domD2
U = {Φ ∈ H2(L) : Φ − i

�

DΦ = U (Φ + i
�

DΦ)},

where H2(L) is the Sobolev space of order 2.
It is going to be convenient for the next section to keep in mind the following

well-known property about magnetic Laplacians (see, e.g., [35] for a more detailed
study of this properties).

Proposition 1 Let D2
U be a self-adjoint extension of the magnetic Laplacian asso-

ciated to a vector potential A. Then, for any Ã there exists a self-adjoint extension
of the associated magnetic Laplacian, D̃2

V , and an isometry T on L2(L) mapping
dom D̃2

V into domD2
U such that

T−1D2
UT = D̃2

V .

Moreover, V = T−1UT with T the restriction to the boundary of T ,i.e. the operator
T : L2(∂L) �→ L2(∂L) such that T Φ = TΦ for any Φ ∈ H2(L).

Proof As we already said, the magnetic vector potential is taken to be continuous
and therefore, by the Poincaré Lemma, there exists χ : L → R differentiable such
that χ′ = A − Ã. Let T denote the multiplication map defined by

T : Φ ∈ L2(L) �→ eiχΦ ∈ L2(L). (5.2)

It follows directly from this definition that T is an isometry on L2(L). Using the
product rule, it is easy to check that

(
d

dx
− iA(x)

)
TΨ = T

(
d

dx
− iÃ(x)

)
Ψ.

Evaluating at the boundary, it follows

DUTΨ = TD̃VΨ = T D̃VΨ ,

where T is the diagonal matrix T = diag({eiχ(v)}v∈∂L).
Using this, it is straightforward to show that for any Φ ∈ domD2

U , Ψ = T−1Φ is
in dom D̃2

V , if V = T−1UT . Moreover,

D2
UTΨ = TD̃2

T−1UT ,

which concludes the proof.
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As a consequence of this property, we show the following result which will allow
us to consider constant vector potentials.

Corollary 1 Every self-adjoint extension of a magnetic Laplacian D2
U , associated

with a potential A, is equivalent to one associated with a constant potential Ã such
that domD2

U = dom D̃2
U .

Proof Let l denote the length of the interval, i.e.
∫
L dx = l. Take Ã = l−1

∫
L A(x) dx

and χ(x) = ∫ x
0 (A(x) − Ã) dx. Define

D̃2
U =

(
d

dx
− iÃ

)2

and T as in Proposition 1; it follows that T = I2×2 and therefore by Proposition 1

T−1D2
UT = D̃2

U .

Finally, it follows straightforwardly from the previous corollary the next result,
wich will be the base result for our main purpose to prove controllability at the
boundary.

Corollary 2 Let Δ stand for the Laplacian, i.e. D2 with A ≡ 0. For every magnetic
Laplacian, D2

U , there is an equivalent self-adjoint extension of the Laplacian. More-
over, if T is the multiplication operator defined on (5.2) with χ such that χ′ = A,
then

T−1D2
UT = ΔT−1UT .

Among the possible unitary operatorsU ∈ U(∂L) � U(C2) that one can consider,
there are different relevant particular choices. It is important tomention thatU = I2×2

defines Neumann boundary conditions whileU = −I2×2 defines Dirichlet boundary

conditions. A simple calculation shows that U =
[
0 1
1 0

]
defines periodic boundary

conditions, i.e. Φ(0) = Φ(l), (DΦ)(0) = (DΦ)(l). The previous corollaries allow
us to define the family of boundary conditions that wewill use for the implementation
of quantum control at the boundary.

Definition 4 LetDU be a magnetic Laplacian on the interval Lwith periodic bound-
ary conditions and with a constant magnetic potential. Let T be the multiplication
operator defined by (5.2) with χ : L �→ R such that dχ

dx = A. Then V = T−1UT de-
fines quasi-periodic boundary conditions.

A simple computation shows that the unitary operators appearing in this definition
are:

V =
[
0 e−iAl

eiAl 0

]
, T =

[
1 0
0 eiA

]
eib,

where b is the constant of integration in the definition of the function χ(x).



5 Quantum Control at the Boundary 65

Theway inwhichwe are going tomakeuse of the result inCorollary 2 is as follows.
As the quantum control system we will take a free particle moving in the interval L.
That is, the family of Hamiltonians is taken to be the standard Laplacian or, equiva-
lently, the magnetic Laplacian with A ≡ 0. As explained earlier in this section, these
operators are not well defined until we fix the corresponding domains. Each operator
in this family is going to be characterised by a different quasi-periodic boundary
condition. By Corollaries 1 and 2 each of these systems is unitarily equivalent to a
magnetic Laplacian with constant magnetic potential A and periodic boundary con-
ditions. We stress here that by constant we mean that the potential has the same
value, independent of the point of the interval. From now on we will use the same
symbol A to denote the constant magnetic potential A ∈ H1(L) and its value A ∈ R.
We are going to consider that the the constant b = 0. The transformation T of (5.2)
is defined in this case by the function

χ(x) = Ax.

We want now to implement the scheme of quantum control at the boundary. This
means that we are going to use the parameter A defining the boundary condition as
our control and we will suppose that now A = A(t) is a function of time. At every
instant of time it will still be a constant magnetic potential along the interval L, but
its magnitude will depend on time and constitute our control parameter.

Thus, we consider a quantum control system whose Hamiltonians are standard
Laplacians with time-dependent quasi-periodic boundary conditions such that

Ψ (0) = e−iχ(l,t)Ψ (l), (5.3)

where now
χ(x, t) = A(t)x (5.4)

forms a family of functions from L toR. One should notice that the time dependence
of these Hamiltonians is subtle: usually one faces the problem where domH (t) does
not depend on time but the explicit, functional form of H (t) does, while here we
have −Δ for every t and domΔ varying with time. That is, we are considering at
each time a different self-adjoint extension of the Laplacian on our interval L.

Therefore, as anticipated in the previous section, looking for solutions of the
time-dependent Schrödinger equation is harder than in the most common situations.
However, based on the equivalence established in this section we will be able to
transform these problems into equivalent ones with Hamiltonian H (t) such that
domH (t) remains independent of t and time dependence appears explicitly in the
form of H (t).

In summary, we are interested in the following control problem.
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Definition 5 Consider the compact interval L = [0, l]. The boundary control sys-
tem associated to L is the family of quantum Hamiltonians defined by the Laplace
operator and domains given by quasi-periodic boundary conditions domΔU (t), with

U (t) =
[

0 e−iA(t)l

eiA(t)l 0

]
.

5.4 Existence of Dynamics in Boundary Control Systems

The aim of this section is to study the dynamics of a boundary control system as
defined in Definition 5. It will turn out that the dynamics will be well defined if
the control function A : R �→ H1(L) varies smoothly with time. Quantum systems’
evolution is given by a Hamiltonian operatorH (t), which in the most general setting
depends itself on the time t, and according to Schrödinger equation

i
d

dt
Ψ (t) = H (t)Ψ (t). (5.5)

In the case we are interested on H (t) is a family of differential operators on L2(L)

and Ψ (t) is a curve in the state space P(H).
Concerning the existence of solutions for the Schrödinger equation with a given

Hamiltonian, there are several results establishing conditions for solutions to exist
[33, 41]. It is customary to search for solutions using the idea of unitary propa-
gators, which are families of operators which allow us to write the solution of the
Schrödinger equation with initial state Ψs at t = s as Ψ (t) = U (t, s)Ψs for t > s. A
proper definition of a unitary propagator would be as follows:

Definition 6 A two-parameter family of unitary operatorsU (s, t), with s, t ∈ R, that
satisfies:

(i) U (r, s)U (s, t) = U (r, t)
(ii) U (t, t) = I
(iii) U (s, t) is jointly strongly continuous in s and t

is called a unitary propagator.

After unitary propagators are introduced, the existence of the solutions for the as-
sociated Cauchy problems is equivalent to the existence of a unitary propagator for
the (5.5). For the most general setting, in which domH (t) varies with t, J. Kisyński
gave conditions that H (t) must satisfy for the unitary propagator to exist [33]. How-
ever, we will be interested in the less general case in which D = domH (t) is the
same for every t and thus it is enough to consider a less general result by Reed and
Simon [41, §X.12]. Instead of treating the case of families of self-adjoint operators,
they study the more general case of families of generators of contraction semigroups,
which can be directly applied to the case of families of self-adjoint operators since



5 Quantum Control at the Boundary 67

for H self-adjoint, ±iH is the generator of a contraction semigroup (see Theorem
X.47a and Example 1 on §X.8 of [41]).

Let S(t) denote a family of generators of a contraction semigroup. For such a
case, Reed and Simon define an approximation for the propagator U (t, s) solving
the equation

d

dt
ϕ(t) = −S(t)ϕ(t), ϕ(s) = ϕs

in the following way. First there is considered a partition of the time interval, taking a
generator which is constant on each element of the partition and providing conditions
ensuring that it converges to the solution. If, for example, the time interval we are
interested in is I = [0, 1], they take the partition made of k elements Ij = [ j−1

k ,
j
k ],

1 ≤ j ≤ k, and define the approximate propagator

Uk (t, s) =
{
exp

(
−i(t − s)S

(
j−1
k

))
if j−1

k ≤ s ≤ t ≤ j
k

Uk (t,
j−1
k )Uk (

j−1
k ,

j−2
k ) . . .Uk (

j−l
k , s) if j−(l+1)

k ≤ s ≤ j−l
k ≤ j−1

k ≤ t ≤ j
k .

(5.6)

That is, if s, t lie in the same interval Ij they consider the evolution operator given
by the action of the contraction semigroup generated by S(

j−1
k ) and if t, s lie in

different intervals, they use the product property of the unitary propagator to define
it.

Before stating the Theorem by M. Reed and B. Simon let us prove the following
result that allows to treat the boundary control problem as a time dependent problem
with fixed domain. Following the ideas exposed in the previous section, we can find
a natural equivalence between a boundary control system and a magnetic controlled
one:

Proposition 2 Every boundary control system is (unitarily) equivalent to amagnetic
control system, that is, a system whose evolution is given by the Hamiltonian

H (t) = −
[(

d

dx
− iA(t)

)2

+ A′(t)x

]

with periodic boundary conditions and controls A : I ⊂ R �→ H1(L), where I is some
compact interval and H1(L) is the Sobolev space of order 1 on the interval L.

Proof Take the family of unitary transformations T (t) as in (5.2) with χ = χ(t):

T (t) : Ψ ∈ L2(L) �→ eiχ(t)Ψ ∈ L2(L).

Define Φ(t) = T (t)Ψ (t). The chain rule implies

d

dt
Φ(t) = dT

dt
(t)Ψ (t) + T (t)

d

dt
Ψ (t),
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where the derivatives of the operators have to be understood in the strong operator
topology sense. Using the Schrödinger equation for Ψ , cf. (5.5), and the definition
of T (t), we have

i
d

dt
Φ(t) =

[
− d

dt
χ(t) − T (t)ΔT (t)−1

]
Φ(t).

Take χ(t) = A(t)x as in (5.4) and remember that we are assuming that the integration
constant is b = 0. Thus, we have χ(t) = A(t)x and T (t)ΔT (t)−1 = − (

d
dx − iA(t)

)2

=: −D2. Thus we have finally that

i
d

dt
Φ(t) = −

[(
d

dx
− iA(t)

)2

+ A′(t)x

]
Φ(t),

with periodic boundary conditions for every t ∈ I :

⎧
⎨

⎩

Φ(0) = Φ(l)

(DΦ)(0) = (DΦ)(l) ⇔ dΦ
dx

∣∣∣∣
x=0

= dΦ
dx

∣∣∣∣
x=l

.

Notice that the equivalence in the last condition follows because we are consid-
ering magnetic potentials that are constant on the interval L. This proposition shows
how to treat the boundary control system applying a unitary transformation which
leads to a magnetic controlled system, where the time-dependence of the Hamilto-
nian’s domain has been removed.

For each t ∈ R let S(t) : D ⊂ H �→ H be the generator of a contraction semi-
group, densely defined on D. Notice that we are assuming that the domain D re-
mains fixed for every t. Let ρ(S(t)) denote the resolvent set of the operator S(t) and
assume that 0 ∈ ρ(S(t)) for all t ∈ R. For convenience of the notation it is defined a
two-parameter family of operators

C(t, s) = S(t)S(s)−1 − I .

Note that 0 ∈ ρ(S(t)) for all t implies that S(t) is a bijection of D onto H, and
therefore C(t, s) it is a bounded operator by the Closed Graph Theorem. Moreover,
for every Φ ∈ H and every s ∈ R there exists Ψ ∈ D such that Φ = S(s)Ψ . Thus,
for that Φ,

C(t, s)Φ = S(t)Ψ − S(s)Ψ.

That is, studying the behaviour of C(t, s)Φ for any Φ ∈ H can be understood as
studying that of S(t)Ψ − S(s)Ψ for any Ψ ∈ D. In order to prove existence of dy-
namics of the boundary control systemwe are going to use the next result byM. Reed
and B. Simon in what follows.
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Theorem 1 (Reed and Simon [41, Thm. X.70]) Let H be a Hilbert space and let I
be an open interval in R. For each t ∈ I , let S(t) be the generator of a contraction
semigroup on H so that 0 ∈ ρ(S(t)) and

(a) The S(t) have common domain D.
(b) For each Φ ∈ H, (t − s)−1C(t, s)Φ is uniformly strongly continuous and uni-

formly bounded in s and t for t 	= s lying in any fixed compact subinterval of I .
(c) For each Φ ∈ H, C(t)Φ = lims↗t(t − s)−1C(t, s)Φ exists uniformly for t in

each compact subinterval of I and C(t) is bounded and strongly continuous in t.

Then for all s ≤ t in any compact subinterval of I and any Φ ∈ H,

U (t, s)Φ = lim
k→∞

Uk(t, s)Φ

exists uniformly in s and t, where Uk(t, s) is given by (5.6). Further, if Φs ∈ D, then
Φ(t) = U (t, s)Φs is in D for all t and satisfies

d

dt
Φ(t) = −S(t)Φ(t), Φ(s) = Φs

and ‖Φ(t)‖ ≤ ‖Φs‖ for all t ≥ s.

The rest of this section is devoted to prove that the family of magnetic Laplacians
of Proposition 2 meets the conditions of the Theorem 1.

We are going to work with Hamiltonians whose time-dependent structure can be
written as

H (t) =
n∑

i=1

fi(t)Hi,

with fi : R → R containing all the time dependence andHi being constant symmetric
operators. Applying Theorem 1 to this type of Hamiltonians is the purpose of Theo-
rem 2, which establishes sufficient conditions to be fulfilled so that the existence of
a unitary propagator is guaranteed.

Theorem 2 Let {Hi}ni=1 be a family of symmetric operators densely defined onD ⊂
H and let fi : I ⊂ R → R be real valued functions for 1 ≤ i ≤ n. Define the time-
dependent operator

H (t) =
n∑

i=1

fi(t)Hi, domH (t) = D.

If it holds

(i) H (t) is self-adjoint for all t ∈ I ,
(ii) fi ∈ C1(I) for every i, and
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(iii) for every i there exists a K > 0 (not depending on t) such that for everyΨ ∈ D,

‖HiΨ ‖ ≤ K(‖H (t)Ψ ‖ + ‖Ψ ‖)

for every t ∈ I .

Then, there exists a strongly differentiable unitary propagator U (t, s) with s, t ∈ I
such that, for any Ψs ∈ D, Ψ (t) = U (t, s)Ψs satisfies

d

dt
Ψ (t) = −iH (t)Ψ (t), Ψ (s) = Ψs.

Before we introduce the proof it is useful to introduce the following lemmas.

Lemma 1 Let H (t) be as in Theorem 2 and define Si = iHi and S̃(t) = iH (t) + I .
Then, for every Φ ∈ H, there exists K > 0, independent of Φ and t, such that

∥∥∥SiS̃(t)−1Φ

∥∥∥ ≤ K ‖Φ‖ .

Proof Since H (t) is self-adjoint, the spectrum of S̃(t) is a subset of iR + 1 = {iα +
1 : α ∈ R} ⊂ C. Thus S̃−1 is bounded and mapsH onto D.

That said, this lemma is a direct consequence of hypothesis (iii) of Theorem 2.
For every Ψ ∈ D,

‖SiΨ ‖ = ‖HiΨ ‖ ≤ K(‖H (t)Ψ ‖ + ‖Ψ ‖)
= K

(∥∥∥S̃(t)Ψ − Ψ

∥∥∥ + ‖Ψ ‖
)

≤ K
(∥∥∥S̃(t)Ψ

∥∥∥ + 2 ‖Ψ ‖
)

for every t. Since S̃(t)−1Φ ∈ D, for every Φ ∈ H it holds:

∥∥∥SiS̃(t)−1Φ

∥∥∥ ≤ K
(
‖Φ‖ + 2

∥∥∥S̃(t)−1Φ

∥∥∥
)

.

The distance from 0 to σ(S̃(t)) is at least 1, and thus
∥∥∥S̃(t)−1

∥∥∥ ≤ 1. Hence, renaming

the constant we get ∥∥∥SiS̃(t)−1Φ

∥∥∥ ≤ K ‖Φ‖ .

Lemma 2 Let H (t) be as in Theorem 2 and define Si = iHi and S̃(t) = iH (t) + I .
Then, for s, t lying in a compact subset of I and for everyΦ ∈ H, limt→s S̃(t)S̃(s)−1Φ

= Φ uniformly on s.

Proof We need to prove the limit uniformly on s, i.e., that

lim
t→s

∥∥∥S̃(t)S̃(s)−1Φ − Φ

∥∥∥ = 0



5 Quantum Control at the Boundary 71

uniformly on s. We have

∥∥∥S̃(t)S̃(s)−1Φ − Φ

∥∥∥ =
∥∥∥∥∥

n∑

i=1

[fi(t) − fi(s)]SiS̃(s)−1Φ

∥∥∥∥∥

≤
n∑

i=1

|fi(t) − fi(s)|
∥∥∥SiS̃(s)−1Φ

∥∥∥ .

Now, using Lemma 1 one gets

∥∥∥S̃(t)S̃(s)−1Φ − Φ

∥∥∥ ≤ K
n∑

i=1

|fi(t) − fi(s)| ‖Φ‖ .

Hence, limt→s

∥∥∥S̃(t)S̃(s)−1Φ − Φ

∥∥∥ = 0 uniformly on s since every fi is uniformly

continuous on I (which follows from (ii) and the fact that we are considering a fixed,
compact subset of I ).

Proof (Proof of Theorem 2) This theorem is a consequence of Theorem 1 and the fact
that S(t) = iH (t) is the generator of a contraction semigroup by Hille–Yoshida theo-
rem (see [41], Theorem X.47a and Example 1 on §X.8). In order to apply Theorem 1
we need to have 0 ∈ ρ(iH (t)) for every t, which is not satisfied in general. However,
since H (t) is self-adjoint i ∈ ρ(H (t)) for every t and therefore −1 ∈ ρ(S(t)) which
implies S̃ = S(t) + I has 0 in its resolvent set. Note that if Φ(t) = Ũ (t, s)ξ satisfies

d

dt
Φ(t) = −S̃(t)Φ(t), Φ(s) = ξ,

then Ψ (t) = U (t, s)ξ with U (t, s) := Ũ (t, s)e−i(s−t) satisfies, by the product rule,

d

dt
Ψ (t) = −S(t)Ψ (t), Ψ (s) = ξ.

Thus, existence of Ũ (t, s)with the properties in the statement of Theorem2 guarantee
the existence of U (t, s) with the same properties.

Hence, it is enough to show that S̃(t) satisfies the hypothesis of Theorem 1. It is
clear that S̃(t) can be written as

S̃(t) = I + i
n∑

j=1

fj(t)Hj =
n+1∑

j=1

fj(t)Sj

with Si = iHj, fn+1 = 1 and Sn+1 = I . Also is easy to check using Hille–Yoshida
theorem that S̃(t) is the generator of a contraction semigroup.
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Hypothesis (a) of Theorem 1 is satisfied since, by definition, every H (t) (and
therefore S̃(t)) has the same domain D.

Regarding (b) and (c), it is useful to write

(t − s)−1C(t, s) = (t − s)−1[S̃(t) − S̃(s)]S̃(s)−1 =
n∑

i=1

fi(t) − fi(s)

t − s
SiS̃(s)−1.

(5.7)
For convenience, let us denote gi(t, s) = fi(t)−fi(s)

t−s , which clearly is C1 in s and t for
t 	= s in I . Moreover, for s 	= t lying in any fixed compact subinterval of I , gi is
uniformly continuous because fi(t) is C1(I).

From the previous equation it follows that for Φ ∈ H

∥∥(t − s)−1C(t, s)Φ
∥∥ ≤

n+1∑

i=1

|gi(t, s)|
∥∥∥SiS̃(s)−1Φ

∥∥∥ ≤ K
n+1∑

i=1

|gi(t, s)| ‖Φ‖ ,

where we have used Lemma 1 in the last inequality. For s 	= t lying in any fixed com-
pact subinterval of I , |gi(t, s)| is bounded uniformly on s and t since it is continuous
and thus

∥∥(t − s)−1C(t, s)Φ
∥∥ is uniformly bounded for such s, t.

For the uniform strong continuity with respect to t, it is clear that

∥∥(t0 − s)−1C(t0, s)Φ − (t − s)−1C(t, s)Φ
∥∥ ≤

n+1∑

i=1

|gi(t0, s) − gi(t, s)|
∥∥∥SiS̃(s)−1Φ

∥∥∥

≤ K
n+1∑

i=1

|gi(t0, s) − gi(t, s)| ‖Φ‖

and, thus, uniform continuity of t �→ gi(t, s) implies uniform strong continuity of
the operator-valued function t �→ (t − s)−1C(t, s).

On the other hand, regarding uniform strong continuity respect to s we have

∥∥(t − s0)
−1C(t, s0)Φ − (t − s)−1C(t, s)Φ

∥∥

≤
n+1∑

i=1

∥∥∥gi(t, s0)SiS̃(s0)
−1Φ − gi(t, s)SiS̃(s)−1Φ

∥∥∥

≤
n+1∑

i=1

|gi(t, s0)|
∥∥∥SiS̃(s0)

−1Φ − SiS̃(s)−1Φ

∥∥∥ +

+
n+1∑

i=1

|gi(t, s0) − gi(t, s)|
∥∥∥SiS̃(s)−1Φ

∥∥∥ .

(5.8)
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Let us examine separately the two terms on the right-hand side. First,

n+1∑

i=1

|gi(t, s0) − gi(t, s)|
∥∥∥SiS̃(s)−1Φ

∥∥∥ ≤ K
n+1∑

i=1

|gi(t, s0) − gi(t, s)| ‖Φ‖

and therefore because gi is uniformly continuous for s 	= t in a compact subinterval
of I , for every s 	= t and every ε > 0 there exists δ1 > 0 such that for |s0 − s| < δ1
it holds

n+1∑

i=1

|gi(t, s0) − gi(t, s)|
∥∥∥SiS̃(s)−1Φ

∥∥∥ ≤ ε

2
.

For the first term in (5.8),

n+1∑

i=1

|gi(t, s0)|
∥∥∥SiS̃(s0)

−1Φ − SiS̃(s)−1Φ

∥∥∥ ≤ K
n+1∑

i=1

|gi(t, s0)|
∥∥∥S̃(s)S̃(s0)

−1Φ − Φ

∥∥∥

and thus by Lemma 2 and the fact that gi is uniformly bounded for s 	= t, for every
s 	= t and every ε > 0 there exists δ2 > 0 such that for |s0 − s| < δ2 it holds

n+1∑

i=1

|gi(t, s0)|
∥∥∥SiS̃(s0)

−1Φ − SiS̃(s)−1Φ

∥∥∥ ≤ ε

2
.

Hence, taking δ = min{δ1, δ2} and substituting into (5.8)wehave that for |s0 − s| < δ

∥∥(t − s0)
−1C(t, s0)Φ − (t − s)−1C(t, s)Φ

∥∥ ≤ ε

which shows that hypothesis (b) is fulfilled.
Regarding hypothesis (c) ofTheorem1, it is easy to see thatC(t)Φ = ∑n+1

i=1 f
′
i (t)Si

S̃(t)−1Φ. Indeed, from (5.7) we get

∥∥∥∥∥(t − s)−1C(t, s)Φ −
n+1∑

i=1

f ′
i (t)SiS̃(t)−1Φ

∥∥∥∥∥

=
∥∥∥∥∥

n+1∑

i=1

[
gi(t, s)SiS̃(s)−1 − f ′

i (t)SiS̃(t)−1
]
Φ

∥∥∥∥∥

≤
n+1∑

i=1

|f ′
i (t)|

∥∥∥SiS̃(s)−1Φ − SiS̃(t)−1Φ

∥∥∥

+
n+1∑

i=1

|gi(t, s) − f ′
i (t)|

∥∥∥SiS̃(s)−1Φ

∥∥∥ .
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Using again Lemmas 1 and 2 and the fact that we are considering a compact subin-
terval, the continuity of every f ′

i and the definition of derivative implies the limit
C(t)Φ = lims→t(t − s)−1C(t, s)Φ exists uniformly on t and is equal to C(t)Φ.

Boundedness of C(t) as an operator follows directly from Lemma 1 and the
continuity of f ′

i (t):

‖C(t)Φ‖ =
∥∥∥∥∥

n+1∑

i=1

f ′
i (t)SiS̃(t)−1Φ

∥∥∥∥∥ ≤
n+1∑

i=1

|f ′
i (t)|

∥∥∥SiS̃(t)−1Φ

∥∥∥

≤ 2K
n+1∑

i=1

|f ′
i (t)| ‖Φ‖ .

Besides existence of unitary propagators for Schrödinger equations associated
with Hamiltonians of the type we are dealing with, we are going to need a result
on how close the evolution induced by two of these Hamiltonians is when they are
similar (in the precise sense introduced in Theorem 3).

Theorem 3 Let Hi be symmetric operators with common domain D. Let fi, gi ∈
C1(I), i = 1, . . . , n and I ⊂ R. Suppose that H1(t) = ∑n

i=1 fi(t)Hi and H2(t) =∑n
i=1 gi(t)Hi, with common domain D are self-adjoint operators, satisfying the hy-

pothesis of Theorem 2. Then, for every Ψ ∈ D, every T > 0 and every ε > 0 there
exist δ > 0 such that ‖fi − gi‖∞ < δ implies ‖U1(T , s)Ψ −U2(T , s)Ψ ‖ < ε.

Proof By Theorem 2, there exist unitary propagators U1(t, s), U2(t, s) associated
with H1(t), H2(t) respectively. Since for any Ψ ∈ D, t �→ U�(t, s)Ψ is strongly dif-
ferentiable (� = 1, 2), we have t �→ ‖U1(t, s)Ψ −U2(t, s)Ψ ‖ is differentiable and
by the Fundamental Theorem of Calculus we have

‖U1(T , s)Ψ −U2(T , s)Ψ ‖ =
∫ T

s

d

dt
‖U1(t, s)Ψ −U2(t, s)Ψ ‖ dt.

Strong differentiability implies that we can take the derivative into the norm and get

‖U1(T , s)Ψ −U2(T , s)Ψ ‖ =
∫ T

s

∥∥∥∥
d

dt
U1(t, s)Ψ − d

dt
U2(t, s)Ψ

∥∥∥∥ dt

=
∫ T

s
‖H1(t)Ψ − H2(t)Ψ ‖ dt

≤
n∑

i=1

∫ T

s
|fi − gi| ‖HiΨ ‖ dt

≤ (T − s)
n∑

i=1

‖fi − gi‖∞ ‖HiΨ ‖
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Hence, it is enough to take

δ = inf
i

ε

n(T − s) ‖HiΨ ‖ .

5.5 Approximate Controllability of Boundary
Control Systems

Approximate controllability of the boundary control system is, by Proposition 2,
equivalent to approximate controllability of a quantum system with Hamiltonian

H (t) = −
[(

d

dx
− iA(t)

)2

+ A′(t)x

]

and periodic boundary conditions.
Unlike control on a finite dimensional Hilbert space, control on an infinite dimen-

sional Hilbert space has no general result giving necessary and sufficient conditions
for (approximate) controllability. However, it will be enough for us to rely on a the-
orem by Chambrion et al. [11], giving sufficient conditions to prove approximate
controllability for the boundary control system. In the referenced work it is stud-
ied the approximate controllability of some linear control systems; that is, systems
whose evolution is given by

i
d

dt
Ψ (t) = H0Ψ (t) + u(t)H1Ψ (t), (5.9)

with u : R → (0, c). Moreover, they assume that:

(A1) H0,H1 are self-adjoint operators not depending on t,
(A2) there exists an orthonormal basis {φn}n∈N of H made of eigenvectors of H0,

and
(A3) φn ∈ domH1 for every n ∈ N.

Control systems satisfying conditions (A1)–(A3) will be called normal quantum
control systems. For them, the following theorem is proven:

Theorem 4 (Chambrion et al. [11, Thm. 2.4]) Consider a normal quantum control
system, with c > 0 as described above. Let {λn}n∈N denote the eigenvalues of H0,
each of them associated to the eigenfunction φn. Then, if the elements of the sequence
{λn+1 − λn}n∈N areQ-linearly independent and if 〈φn+1,H1φn〉 	= 0 for every n ∈ N,
the system is approximately controllable.

Based on this theorem we will prove the main result of this work which ensures
the approximate controllability of the boundary control systems. This is the first
instance in which controllability of a system using boundary controls is considered.
Before doing that it is convenient to introduce the following lemma:
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Lemma 3 Consider a normal quantum control system i ddt Ψ = H0Ψ + u(t)H1Ψ

with H0, H1 such that H (t) = H0 + u(t)H1 satisfies hypothesis of Theorem 2. Then
given any ε > 0 there exist perturbed Hamiltonians H̃0, H̃1 with the same domain as
H0 such that they satisfy the conditions of Theorem 2 and also those of Theorem 4 and
such that for every t > s and every C1 piecewise function u : [s, t] → R, it holds:

∥∥∥U (t, s)Ψ − Ũ (t, s)Ψ
∥∥∥ < ε, (∀Ψ ∈ domH0),

where we denote byU (t, s) and Ũ (t, s) the unitary propagators associated with H (t)
and H̃ (t) = H̃0 + u(t)H̃1 respectively.

Proof Let λk ,φk denote the eigenpairs of H0. If it is the case that Q-linear indepen-
dence condition of Theorem 4 hold, we set H̃0 = H0; otherwise take an increasing
sequence of positive irrational numbers νk such that they are rationally independent
and νk < 2−k . Then define

H0,p =
∑

k∈N

νkφkφ
†
k .

ObviouslyH0,p has the same domain asH0 because
∥∥H0,pΨ

∥∥2 ≤ ∑
k 2

−2k |〈φk , Ψ 〉|2,
from what we get

∥∥H0,pΨ
∥∥ ≤ ‖Ψ ‖ and H0,p can be chosen to have the same domain

as H0.
Define H̃0 = H0 + μ0H0,p with μ0 ∈ Q. Then H̃0 has eigenvalues λk + μ0νk sat-

isfying the rationally independence condition of Theorem 4.
If H1 is such that 〈φn+1,H1φn〉 = 0 for n ∈ N ⊂ N, take a sequence of positive,

non-vanishing terms {αn}n∈N such that αn < 2−n and define

H1,p =
∑

n∈N
αnφn+1φ

†
n.

Again the domain ofH1,p can be chosen to be domH0, since
∥∥H1,pΨ

∥∥2 ≤ ∑
n∈N 2−2n

|〈φn, Ψ 〉|2 and thus
∥∥H1,pΨ

∥∥ ≤ ‖Ψ ‖.
Defining H̃1 = H1 + μ1H1,pwithμ1 real it is clear that H̃1 satisfies 〈φn+1, H̃1φn〉 	=

0 for any n ∈ N.
From what we already said, taking into account that H0,p and H1,p are bounded,

it follows that if H (t) satisfies the hypothesis of Theorem 3, so does H̃ (t) on each
interval in which u(τ ) is C1 and therefore, taking μ0 and μ1 small enough we have

∥∥∥U (t, s)Ψ − Ũ (t, s)Ψ
∥∥∥ < ε, for all Ψ ∈ domH0.

Suppose that A ∈ C2(I) defines the time dependent magnetic vector potential.
Then H (t) fulfills all the hypothesis of Theorem 2 but (iii), which requires some
work to prove. The following lemma shows that the families of Hamiltonians H (t)
that we consider, i.e., those on Proposition 2, satisfy hypothesis (iii) of Theorem 2
and therefore have well defined evolutions.
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Lemma 4 Let A : L → R be a constant magnetic vector potential, and denote by
−D2

A a self-adjoint extension of the associated magnetic Laplacian, whose domain
we denote by D ⊂ H2(L). Let r > 0, and suppose that |A| < r. Then there exists a
constant K (not depending on A) such that

∥∥∥∥
d2Ψ

dx2

∥∥∥∥ ≤ K
(∥∥D2

AΨ
∥∥ + ‖Ψ ‖)

for all Ψ ∈ D.

Proof We will prove this lemma in three steps. First, we will show that for every
constant vector potential A ∈ H1(L) the bound in the lemma stands with constant KA

depending on A. In fact, since the magnetic Laplacian is self-adjoint, −D2
A + iI is

invertible with bounded inverse and maps H onto D ⊂ H2(L). Also − d2

dx2 is closed
inH2(L) since it is the adjoint of the standard Laplacian with the minimal symmetric
domain (i.e., with domain D0 = {Ψ ∈ H2(L) | Ψ = 0, dΨ

dx = 0}) as is well-known
(see, e.g., [36]). By the Closed Graph Theorem this implies that

d2

dx2
(D2

A + iI)−1

is a bounded operator on L2(L). Therefore, for any Ψ ∈ D,

∥∥∥∥∥
d2Ψ

dx2

∥∥∥∥∥ =
∥∥∥∥∥
d2

dx2
(D2

A + iI)−1(D2
A + iI)Ψ

∥∥∥∥∥ ≤ KA

∥∥∥(D2
A + iI)Ψ

∥∥∥ ≤ KA

(∥∥∥D2
AΨ

∥∥∥ + ‖Ψ ‖
)

(5.10)

where we have defined KA =
∥∥∥ d2

dx2 (D
2
A + iI)−1

∥∥∥.
Once we have proved (5.10), we can prove that for every constant vector potential

A there exists an εA > 0 such that for any constant magnetic vector potential B
satisfying |A − B| ≤ εA it holds

∥∥∥∥
d2Ψ

dx2

∥∥∥∥ ≤ K̃A
(∥∥D2

BΨ
∥∥ + ‖Ψ ‖) ,

with K̃A > 0 not depending on B. Indeed, from (5.10) we have

∥∥∥∥
d2Ψ

dx2

∥∥∥∥ ≤ KA
(∥∥D2

AΨ
∥∥ + ‖Ψ ‖) ≤ KA

(∥∥D2
AΨ − D2

BΨ
∥∥ + ∥∥D2

BΨ
∥∥ + ‖Ψ ‖) .

(5.11)
Let us examine the first term in the parenthesis. By the definition of the Magnetic
Laplacians,

∥∥D2
AΨ − D2

BΨ
∥∥ =

∥∥∥∥(A2 − B2)Ψ + 2i(A − B)
dΨ

dx

∥∥∥∥ . (5.12)
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Denoting ε = |A − B| and using the triangle inequality one gets

∥∥∥∥(A2 − B2)Ψ + 2i(A − B)
dΨ

dx

∥∥∥∥ ≤ ε(2|A| + ε) ‖Ψ ‖ + 2ε

∥∥∥∥
dΨ

dx

∥∥∥∥ . (5.13)

Now, using the well-known fact [1, Thm. 5.2] that

∥∥∥∥
dΨ

dx

∥∥∥∥ ≤ K̃

(∥∥∥∥
d2Ψ

dx2

∥∥∥∥ + ‖Ψ ‖
)

,

we get

∥∥∥∥(A2 − B2)Ψ + 2i(A − B)
dΨ

dx

∥∥∥∥ ≤ ε(2|A| + ε + 2K̃)

(
‖Ψ ‖ +

∥∥∥∥
d2Ψ

dx2

∥∥∥∥

)
. (5.14)

Let us define the functionκ(ε) := ε(2|A| + ε + 2K̃), which is a continuousmono-
tone function of ε with range [0,∞). Substituting back into into (5.12) we get

∥∥D2
AΨ − D2

BΨ
∥∥ ≤ κ(ε)

(
‖Ψ ‖ +

∥∥∥∥
d2Ψ

dx2

∥∥∥∥

)
.

Hence, from (5.11) we have that

(1 − κ(ε)KA)

∥∥∥∥
d2Ψ

dx2

∥∥∥∥ ≤ KA (1 + κ(ε))
(∥∥D2

BΨ
∥∥ + ‖Ψ ‖) .

Obviously we can choose εA such that κ(εA)KA = 1/2, and then

∥∥∥∥
d2Ψ

dx2

∥∥∥∥ ≤ 2KA (1 + κ(εA))
(∥∥D2

BΨ
∥∥ + ‖Ψ ‖) =: K̃A

(∥∥D2
BΨ

∥∥ + ‖Ψ ‖) .

The proof can be finished by a compacity argument. Sincewe are only considering
constant vector potentials, each potential A defines a point in R. The subset K of R
associated to the set of vector potentials satisfying |A| ≤ r is a compact subset. Now,
define UA = {B ∈ R | |B − A| < εA}; the family {UA}A∈U forms a covering of K
and by compacity it admits a finite subcovering {UAi }i. Taking the maximum of the
associated constants,

K = max
i

K̃Ai ,

concludes the proof.

Theorem 5 Let Cp(0,T ) the set of piecewise two times continuously differentiable
functions on the interval [0,T ]. The boundary control system with controls Cp(0,T )

is approximately controllable.
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Proof By Proposition 2 the boundary control system is controllable if and only if so
is the magnetic controlled system given by

H (t) = −
[(

d

dx
− iA(t)

)2

+ A′(t)x

]
(5.15)

and periodic boundary conditions. We will proof that this equivalent system is ap-
proximately controllable using Theorem 4. The main problem to do this is the fact
that A(t) and A′(t) are not independent, and to avoid this problemwe need to proceed
in two steps. First we define an auxiliary system to which Theorem 4 applies and then
we use Theorem 3 to show that for any controls on the auxiliary system, its evolution
is approximately the same as the evolution of the original system with some controls
related to those on the auxiliary system.

Let us start with the first step. Take a constantmagnetic vector potential a ∈ H1(L)

with associated magnetic Laplacian −D2 = − (
d
dx − ia

)2
. We consider

A′(t) = u(t), (5.16)

where u : I → R is a control, and define the auxiliary system with Hamiltonian

H̃ (t) = −D2 − u(t)x, (5.17)

It is easy to check that the assumptions made by Chambrion et al. are satisfied in
our case: H0 = −D2 and H1 = x are self-adjoint operators not depending on t, there
exists an orthonormal basis of the Hilbert space H made of eigenfunctions of any
magnetic Laplacian over L provided that L is compact [7, Thm. 3.1.1], and H1 is a
self-adjoint bounded operator (since L is compact) and thus domH1 = H.

By Lemma 3, Theorem 4 can be applied (either to H̃ (t) or to a perturbed sys-
tem with evolution as closed as desired) and so the system is approximately con-
trollable. Hence, for every initial state Ψ0, every target state ΨT , every ε > 0 and
every c > 0 there exists T > 0 and u(t) : [0,T ] → (0, c) piecewise constant such
that the evolution induced by H̃ (t) and denoted Ψ̃ (t), satisfies Ψ̃ (0) = Ψ0 and∥∥∥Ψ̃ (T ) − ΨT

∥∥∥ < ε/2. Denote by Ũ (t, s) the unitary propagator associated to H̃ with

controls u(t).
Now, choosing the vector potential from the original system (5.15) in such a

way that its induced evolution is close enough to that of the auxiliary system, one
guarantees that the evolved state reaches near the target state at time T . In order to
do that, we split the time interval [0,T ] into N pieces of length τ = T/N , and for
each of those subintervals define Ak : [kτ , (k + 1)τ ) → R as

Ak(t) = a +
∫ t

kτ
u(s) ds,
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with u(t) the piecewise control given by Chambrion et al.’s theorem. Taking

A(t) =
N−1∑

k=0

χ[kτ ,(k+1)τ )(t)Ak(t),

it is clear that A′(t) = u(t) and therefore A ∈ Cp(0,T ). Also, by the mean value
theorem,

‖A − a‖∞ = max
k<N

sup
kτ≤t<(k+1)τ

∫ t

kτ
u(s) ds ≤ cτ (5.18)

For the moment, τ is arbitrary but later on we will need to choose it small enough.
Expanding the square on (5.15) and having into account Lemma 4, it is easy to

check that the Hamiltonian of the original system, H (t), fulfills the hypothesis of
Theorem 2 in every interval [kτ , (k + 1)τ ).

Hence, there exists a unitary propagatorUk(t, s) describing the evolution induced
by it for t, s ∈ [kτ , (k + 1)τ ). For t ∈ [kτ , (k + 1)τ ], s ∈ [�τ , (� + 1)τ ) with � < k
the unitary propagator is constructed multiplying them:

U (t, s) = Uk(t, kτ )Uk−1(kτ , (k − 1)τ ) . . .U�((� + 1)τ , s).

In what follows we omit the subscript on Uk since the values of its arguments t, s
identify the index k unambiguously.

Finally, let {Ij} with Ij = [tj, tj−1) be the coarser partition of [0,T ] which is a
common refinement of both the partition {[kτ , (k + 1)τ )}k and that given by the
piecewise definition of u(t). Remember that Theorem 4 proves approximate control-
lability for u(t) piecewise-constant control functions. It is clear that the state of the
system at time T ∈ In, assumed the evolution induced by H (t) (defined in Equation
(5.15)) starting at Ψ0, can be written as

Ψ (T ) = U (T , tn)U (tn, tn−1) . . .U (t1, 0)Ψ0.

And similarly for the state Ψ̃ (T ) if we assume evolution by H̃ defined in Equation
(5.17) (using the unitary propagator Ũ instead of U ).

It is straightforward to check that in every Ij both Hamiltonians satisfy the hypoth-
esis of Theorem 3: the domain of magnetic Laplacians is fixed by periodic boundary
conditions independent of t, and the multiplication operator x is bounded. Remem-
ber that u(t) being C1(Ij), in fact constant on Ij, implies that the functions giving the
time dependence of the Hamiltonians (after expanding the magnetic Laplacians) are
also C1(Ij). Both Hamiltonians satisfy the hypothesis of Theorem 2 (see Lemma 4).
Hence, for any t, s ∈ Ij, and any ε2 > 0 we can chose δ = cτ as in Theorem 3 so
that ∥∥∥Ũ (t, s)Ψ0 −U (t, s)Ψ0

∥∥∥ < ε2.



5 Quantum Control at the Boundary 81

Hence, we have

∥∥∥Ψ̃ (T ) − Ψ (T )

∥∥∥ =
∥∥∥Ũ (T , tn) . . . Ũ (t1, s)Ψ0 −U (T , tn) . . .U (t1, s)Ψ0

∥∥∥

≤
∥∥∥Ũ (T , tn) . . . Ũ (t2, t1)U (t1, s)Ψ0 −U (T , tn) . . .U (t1, s)Ψ0

∥∥∥ + ε2

...

≤ (n + 1)ε2.

Taking ε2 = ε/(2n + 2), we have

∥∥∥Ψ̃ (T ) − Ψ (T )

∥∥∥ ≤ ε

2
.

Using that for the auxiliary system we have that
∥∥∥Ψ̃ (T ) − ΨT

∥∥∥ < ε
2 , we conclude

‖Ψ (T ) − ΨT‖ < ε.

Hence, we have found a control A : [0,T ] → R piecewise two times continuously
differentiable such that from any Ψ0 we can reach as close as we want to any ΨT and
so the system is approximately controllable.

Using Theorem 5 and an approximating argument similar to that in its proof, is easy
to show that controls can also be smooth functions of time.

Corollary 3 Every boundary control system with smooth controls A : [0,T ] → R

is approximately controllable.

Proof By Proposition 2 the boundary control system is approximately controllable
if and only if so is the magnetic controlled system with

H (t) = −
[(

d

dx
− iA(t)

)2

+ A′(t)x

]

and periodic boundary conditions.
From Theorem 5, for every initial state Ψ0, every target state ΨT and every ε > 0,

we have piecewise two times continuously differentiable controls Ã(t) such that the
evolution Ψ̃ (t) induced by

H̃ (t) = −
[(

d

dx
− iÃ(t)

)2

+ Ã′(t)x

]
,

satisfies Ψ̃ (0) = Ψ0 and ‖Ψ̃ (T ) − ΨT‖ < ε/2. Denote by Ũ (t, s) the unitary propa-
gator associated to H̃ (t).
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Using some well-known approximation result (see, for example, [14, §5.3]) one

can find A(t) smooth such that
∥∥∥A − Ã

∥∥∥ < δ1 and
∥∥∥A′ − Ã′

∥∥∥ < δ2. Taking {Ij}j the
partition of [0,T ] given by the subintervals on which Ã(t) is C2 and using the same
argument as in the proof of Theorem 5, one can use Theorem 3 to show that the
evolution induced by H (t) satisfies

‖Ψ (T ) − ΨT‖ < ε.

5.6 Conclusions

We proposed a scheme for quantum control at the boundary and rigorously proved
its controllability. It is the first time that the controllability of such a quantum system
has been considered. This shows that the scheme of quantum control at the boundary
is feasible. Moreover, the particular system considered presents the advantage that
it could be experimentally implemented. Indeed, this quantum system represents a
quantum particle moving in a spire controlled by the flux of a magnetic field that
traverses the plane of the spire.
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Chapter 6
Application of Lie Systems to Quantum
Mechanics: Superposition Rules
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Abstract We prove that t-dependent Schrödinger equations on finite-dimensional
Hilbert spaces determined by t-dependent Hermitian Hamiltonian operators can be
described through Lie systems admitting a Vessiot-Guldberg Lie algebra of Kähler
vector fields. This result is extended to other related Schrödinger equations, e.g.
projective ones, and their properties are studied through Poisson, presymplectic,
and Kähler structures. This leads to deriving nonlinear superposition rules for them
depending on a lower (or equal) number of solutions than standard linear ones. As an
application, we study n-qubit systems and special attention is paid to the one-qubit
case.
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6.1 Introduction

It is undoubtable that geometric techniques, e.g. Lie symmetries or jet bundles, have
become a standard tool in the study of differential equations and related problems
[1–4]. In particular, this work focuses on the geometric analysis of Lie systems
appearing in Quantum Mechanics [4–9]. A Lie system is a system of first-order
ordinary differential equations whose general solution can be written in terms of a
generic finite family of particular solutions and a set of constants via a (generally)
nonlinear function, a so-called superposition rule [5, 6, 8–10].

Lie systems occur in the research on the integrability of quantum systems
[11], t-dependent Schrödinger equations [12], t-dependent frequency Smorodinsky-
Winternitz oscillators [13], several types of Ermakov systems and Milne-Pinney
equations [14–16], wave maps [17], deformation of mechanical systems [18], con-
trol systems [19], etcetera (see [20]). In geometric terms, the Lie-Scheffers Theorem
[6, 8, 20] states that a Lie system amounts to a t-dependent vector field taking values
in a finite-dimensional Lie algebra of vector fields: a Vessiot-Guldberg Lie algebra
[20–22].

The existence of additional compatible geometric structures can be very useful.
Lie systems of physical or mathematical relevance can be studied via symplectic [5,
11, 23–25], Poisson [26], k-symplectic [27], Jacobi [28], and Dirac structures [29].
This allows one to use geometric techniques to analyse their properties, e.g. their
solutions [11], constants ofmotion [13], Lie symmetries [26], and other features [5–7,
9, 30]. Remarkably, geometric structures allow for the determination of superposition
rules without solving complicated systems of partial differential equations (PDEs)
or ordinary differential equations (ODEs) as standard methods [5, 9, 20]. This has
also led to develop new mathematical tools so as to investigate Lie systems [27].

Although Lie systems have already been applied to quantum mechanical sys-
tems [10, 12, 31–33], there still exist many open problems. In particular, this work
addresses the application of Lie systems to t-dependent Schrödinger equations gov-
erning the evolution of n-level quantum systems. This study will be carried out
within the geometric formalism of Quantum Mechanics, which allows us to iden-
tify the Hilbert space H of an n-level quantum system with a 2n-dimensional real
Kähler manifold MQ [34, 35]. It is important to notice that Kähler structures appear
naturally as a consequence of the quantum nature of the problems under study. The
pure states of the system are thus represented by points in MQ, but this relation,
however, is not one-to-one [34], as it happens in the usual Hilbert space approach.
The probabilistic interpretation of the theory states that there exists an equivalence
relation inH − {0}, determined by the free action of the Lie groups U (1) and R+ on
H by multiplication. This can be easily translated to the geometric setting [35–37].
The actions of the Lie groups U (1) and R+ on MQ,0 := MQ − {0} can be projected
onto some lower-dimensional manifolds, which we collectively call quantum quo-
tient manifolds. In particular, when both actions are considered together, we obtain
a 2(n − 1)-dimensional Kähler manifold P whose elements are in a one-to-one cor-
respondence with pure states of quantum systems.
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We will analyse the geometric representation of t-dependent Schrödinger equa-
tions in these manifolds and their description as Lie systems. This enables us to
obtain superposition rules without the integration of vector fields or PDEs as in
standard methods [6, 9]. A crucial role is played by the use of the geometric struc-
tures in the manifolds, e.g. Kähler structures, which allows us to find superposition
rules algebraically through the distributional approach devised in [6] and its refine-
ment for Lie systems with compatible geometric structures [13]. Superposition rules
for solutions of Schrödinger equation arise thus as a canonical property of the sys-
tem, since they are encoded in its canonical structures. In this work, we prove that
t-dependent Schrödinger equations on an n-dimensional Hilbert space H related to
t-dependent traceless Hermitian Hamiltonian operators admit nonlinear superposi-
tion rules depending on n − 1 particular solutions. Thus, such quantum systems can
be endowed with a simple, generally nonlinear, superposition rule expressing their
general solutions by means of a lower number of particular solutions than by the
standard linear superposition rule associated with the Schrödinger equation on C

n.
We also prove that the projection of t-dependent Schrödinger equations onto the quo-
tient manifolds gives rise to Lie systems admitting Vessiot-Guldberg Lie algebras
of Hamiltonian vector fields relative to different geometric structures, e.g. complex,
Dirac, and Poisson structures. Subsequently, the solutions of the referred to as pro-
jective Schrödinger equations [34, 38] are recovered. As an application of the theory,
the case of 2-level quantum systems is analysed in detail. Their interest is due to its
occurrence in the research on qubit models [36, 39].

6.2 Fundamentals

If not otherwise stated, we assume mathematical objects to be real, smooth, and
globally defined so as to omit minor technical problems and to highlight main results.
Systems of differential equations are assumed to be non-autonomous systems of
ordinary differential equations.

Let (V, [·, ·]) be a Lie algebra with a Lie bracket [· , ·] : V × V → V . For sim-
plicity, we will denote the Lie algebra by V if [·, ·] is known from the context. Given
subsets A,B ⊂ V , we write [A,B] for the linear subspace of V spanned by the Lie
brackets between elements ofA and B, and we define Lie(B, [·, ·]) to be the smallest
Lie subalgebra of V containing B. We will simply write Lie(B) if it is clear what we
mean.

A generalised distribution D on a manifold N is an assignment to each x ∈ N
of a linear subspace Dx ⊂ TxN . We say that D is regular at x′ ∈ N if r : x ∈ N �→
dimDx ∈ N ∪ {0} is locally constant around x′. Similarly, D is said to be regular on
an open U ⊂ N when the mapping r is constant on U . Finally, a vector field Y on N
takes values in D, in short Y ∈ D, if Yx ∈ Dx for all x ∈ N .
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A t-dependent vector field X on N is a mapX : (t, x) ∈ R × N �→ X (t, x) ∈ TN
such that τN ◦ X = π2, where π2 : (t, x) ∈ R × N �→ x ∈ N and τN is the projection
of the tangent bundle onto N . For instance, if X ∈ X(N ), where X(N ) stands for the
space of vector fields on N and B : R → R is a function, then X (t, x) = b(t) X (x)
defines a t-dependent vector field. A t-dependent vector field X on N amounts to
a family of vector fields {Xt}t∈R on N , where Xt : x ∈ N �→ X (t, x) ∈ TN for all
t ∈ R [20]. A t-dependent vector field X : R × N → TN is projectable relative to a
map π : N → M when Xt is projectable with respect to π for each t ∈ R.

The smallest Lie algebra ofX is the smallest real Lie subalgebra, V X , containing
{Xt}t∈R, namely V X = Lie({Xt}t∈R). Every Lie algebra V of vector fields on N
induces an integrable generalised distribution on N given by DV := {X (x) | X ∈
V, x ∈ N } ⊂ TN .

An integral curve of X is an integral curve γ : R �→ R × N of the suspension of
X , i.e. the vector field X (t, x) + ∂/∂t on R × N [40]. The curve γ always admits a
reparametrisation t̄ = t̄(t) such that

d(π2 ◦ γ )

dt̄
(t̄) = (X ◦ γ )(t̄). (6.1)

This system is referred to as the associated system of X . Conversely, a system of
first-order differential equations in normal form is always the associated system of
a unique t-dependent vector field. This induces a bijection between the set of t-
dependent vector fields and that of systems of first-order differential equations in
normal form. This justifies denoting by X both a t-dependent vector field and its
associated system (see [20] for details).

Definition 1 A superposition rule depending on m particular solutions for a system
X on N is a function Φ : N m × N → N such that the general solution, x(t), of X
can be brought into the form

x(t) = Φ(x(1)(t), . . . , x(m)(t); k), (6.2)

where x(1)(t), . . . , x(m)(t) is a generic set of particular solutions to X and k ∈ N .

Example 1 It is known that a Riccati equation [9, 41], namely

dx

dt
= a0(t) + a1(t)x + a2(t)x

2, x ∈ R̄ = R ∪ {∞}, (6.3)

where a0(t), a1(t), a2(t) are t-dependent real functions satisfying a0(t)a2(t) 
= 0, is
such that its general solution can be brought into the form x(t) = Φ(x(1)(t), x(2)(t),
x(3)(t); k), with Φ : R̄

3 × R̄ → R̄ defined by

Φ(u(1), u(2), u(3); k) := u(1)(u(3) − u(2)) + ku(2)(u(1) − u(3))

u(3) − u(2) + k(u(1) − u(3))
, (6.4)
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where x(1)(t), x(2)(t), x(3)(t) are different particular solutions to (6.3) and k ∈ R̄. The
solution x(2)(t) is obtained as the limit when k → ∞.

Theorem 1 (The Lie-Scheffers Theorem [6, 8]) A system X on N admits a super-
position rule if and only if X = ∑r

α=1bα(t)Xα for a family b1(t), . . . , br(t) of t-
dependent functions and a basis X1, . . . , Xr of a real Lie algebra of vector fields on
N.

If X possesses a superposition rule, then X is called a Lie system. The associated
real Lie algebra of vector fields 〈X1, . . . , Xr〉 is called a Vessiot-Guldberg Lie algebra
ofX . The Lie-Scheffers Theorem amounts to saying thatX is a Lie system if and only
if V X is finite-dimensional. This fact is the keystone of the theory of Lie systems.
From a practical point of view, superposition rules make possible to solve differential
equations in a simpler manner. For instance, the general solution can be obtained
from a restricted set of particular solutions that can be derived straightforwardly [20]
through numerical methods [9] or in other manners [20].

6.2.1 The Superposition Rule

The computation of superposition rules has been thoroughly studied in literature [6, 9,
20]. The procedure here presented is based on first integrals of diagonal prolongations
of t-dependent vector fields, a fundamental notion in the geometrical description of
Lie systems [6]. The geometric structures on the manifold play also an important
role, as they allow us to obtain the required fist integrals [13].

Definition 2 Let (E, N , τ : E → N ) be a vector bundle. Its diagonal prolongation
to N m is a vector bundle (E[m], N m, τ [m] : E[m] → N m), where E[m] := E × · · · × E
(m-times) and τ [m] is the only map satisfying that πN ,j ◦ τ [m] = τ ◦ πE,j for j =
0, 1, . . . , m − 1, with πE,j : E[m] → E and πN ,j : N m → N being the natural projec-
tions of E[m] and N m onto the j-th copy of E and N within E[m] and N m, respectively.

Definition 3 Given a section e : N → E of (E, N , τ ), its diagonal prolongation to
N m is the section e[m] of (E[m], N m, τ [m]) obtained as the sum of the sections e of
each of the copies of E within E[m]:

e[m] := e(0) + · · · + e(m−1). (6.5)

Diagonal prolongations play a key role in the description of superposition rules
of Lie systems. The following result gives the number of particular solutions that
are needed in order to obtain the general solution of a Lie system by means of a
superposition rule (see [6, 20] for details).

Theorem 2 Let X be a Lie system on an n-dimensional manifold N and let V be its
smallest Vessiot-Guldberg Lie algebra. The number m of particular solutions needed
to obtain the general solution to X by means of a superposition rule is the minimum
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integer such that the diagonal prolongations of the elements in V to N m span at a
generic point of N m a distribution of rank dim V .

The superposition rule is obtained by means of the implicit function theorem. Let
I1, . . . , In ∈ C∞(N m+1) be n common first integrals of the diagonal prolongations of
elements in V to N m+1 satisfying the condition

det

(
∂Ij

∂x(0)
k

)


= 0, j, k = 1, . . . , n. (6.6)

Then, ifwe assume I1 = k1, . . . , In = kn, it is possible to determine, at least in a neigh-
bourhood of a point x ∈ N m+1, the values of x(0)

1 , . . . , x(0)
n in terms of the remaining

coordinates in N m+1 and the values k1, . . . , kn. This gives rise to a superposition rule
for X of the form Φ(x(1), . . . , x(m); k1, . . . , kn) = x(0). Replacing the arguments of
the superposition rule Φ by m independent particular solutions x1(t), . . . , xm(t) to
X , we obtain that the general solution x(t) reads

Φ(x1(t), . . . , xm(t); k1, . . . , kn) = x(t). (6.7)

This procedure to obtain a superposition rule is therefore based on thefirst integrals
of some vector fields. Here is where the additional structures that appear in particular
cases of Lie systems play an important role. The properties of Lie systems can
be exploited to obtain in a systematic way the first integrals that determine the
superposition rule.

6.2.2 Additional Structures in Lie Systems

When V X consists of Hamiltonian vector fields relative to some geometric structure,
a so-called compatible structure, much more powerful methods can be devised to
study Lie systems. This is the case of Lie systems with compatible symplectic,
Poisson, or Dirac structures [23–25, 27, 29, 42]. This is due to the fact that the
geometric structure enables us to obtain the common first-integrals used to derive
the superposition rule in an algebraic manner, e.g. through Casimir elements of Lie
algebras [13].

In the presentwork, this idea is extended to the particular case ofKählermanifolds,
whichhave special relevance in the geometric studyofQuantumMechanics.AKähler
manifold (N , g, ω, J ) is a 4-tuple where N is a differentiable manifold; g, ω, and J
are tensor fields on N such that g is a Riemannian metric, ω is a symplectic form,
and J is a complex structure; and the following compatibility relation is satisfied:

ω(X , Y ) = g(JX , Y ), (6.8)
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for any pair of vector fields X , Y on N . Further information on Kähler manifold
can be found in works dealing with complex manifolds [43–45]. The existence of
a compatible Kähler structure makes possible to define a new type of Lie systems:
the Lie-Kähler systems. They are defined as the Lie systems on a Kähler manifold
whose Kähler structure is preserved along the evolution of the Lie system. As a
consequence, the corresponding superposition rule can be derived with the help of
the Kähler structure.

Definition 4 A system X on a Kähler manifold (N , ω, g, J ) is called a Lie-Kähler
system ifX admits aLie-Hamilton structurewith respect to thePoissonbivector deter-
mined by the symplectic form ω and preserves the complex structure, i.e. LXt J = 0
for any t ∈ R.

From the definition, it is simple to prove:

Proposition 1 Consider a Kähler manifold (N , ω, g, J ). IfX is a Lie-Kähler system,
then, for any t ∈ R, each vector field Xt is a Killing vector field with respect to the
metric tensor g.

Proof Tensor fields ω, g, and J are related by (6.8). If the Lie derivatives of ω and J
relative to a vector field of the Vessiot-Guldberg Lie algebra X is zero, then the Lie
derivative of g relative to the same vector field is also zero. The proposition follows
as a consequence.

The following result could be restated as an alternate definition of Lie-Kähler
systems.

Proposition 2 Consider a Kähler manifold (N , ω, g, J ). IfX is a Lie-Kähler system,
then any vector field of one of the smallest Lie algebra of X is an infinitesimal
symmetry of the Kähler structure on N.

Proof This result is a consequence of the definition of Lie-Kähler systems and Propo-
sition 1.

6.3 The Geometrical Description of Quantum Mechanics

From a physical point of view, a very relevant example of Lie-Kähler systems cor-
responds to finite-dimensional quantum dynamical systems. For them, Kähler struc-
tures encode in geometrical terms the Hermitian structure of the Hilbert space, while
t-dependent Schrödinger equation defines the corresponding Lie system. We briefly
present now the geometrical formulation of quantum mechanics which has been
developed during the last forty years (see [35–37, 43] for a deeper analysis of the
formalism) in order to make these relations explicit.



92 J. F. Cariñena et al.

6.3.1 The Linear, Complex, and Hermitian Structure

The geometric formalism of quantum mechanics is based on the identification of
the Hilbert space H, with Hermitian product 〈·, ·〉 : H × H → C, associated with
an n-level quantum system with a real 2n-dimensional differentiable manifold MQ

[46]. Thus, every vector |ψ〉 ∈ H is identified with a point ψ ∈ MQ. Any basis {|ej〉}
inH defines a real global chart (qj, pj) on MQ as follows

〈ej, ψ〉 = 1√
2

(
qj(ψ) + i pj(ψ)

)
, j = 1, . . . , n, ∀ψ ∈ MQ, (6.9)

As H � R
2n as R-linear spaces, there exists at each ψ ∈ MQ an R-linear iso-

morphism between H and the tangent vector space TψMQ at each ψ ∈ MQ. Thus,
operations onH can be encoded in terms of tensor fields. For instance, multiplication
by the imaginary unit i can be represented by a linear operation on the elements of
TψMQ which defines a complex structure Jψ and hence a (1,1)-tensor field on MQ.
In a similar way, the Hermitian product on H allows us to define two tensor fields
g, ω on MQ, as its real and imaginary parts:

gψ(φψ, φ′
ψ) := 2Re 〈φ, φ′〉 ωψ(φψ, φ′

ψ) := 2Im 〈φ, φ′〉,
∀ψ ∈ MQ, ∀φ, φ′ ∈ TψMQ. (6.10)

In the coordinate system (6.9), these tensor fields read

g =
n∑

j=1

(
dqj ⊗ dqj + dpj ⊗ dpj

)
, ω =

n∑

j=1

dqj ∧ dpj,

J =
n∑

j=1

(

dqj ⊗ ∂

∂pj
− dpj ⊗ ∂

∂qj

)

, (6.11)

with u ∧ v = u ⊗ v − v ⊗ u. The tensor field g becomes a Euclidean metric on R
2n,

and it defines a norm ‖ · ‖ on MQ, which is related to the norm on H defined by its
naturalHermitian product. On the other hand, the tensor fieldω becomes a symplectic
structure on R

2n with Darboux coordinates (qj, pj). The three tensor fields satisfy the
following relations

g(JX , JY ) = g(X , Y ), ω(JX , JY ) = ω(X , Y ), ω(X , Y ) = g(JX , Y ),

∀X , Y ∈ X(MQ).

Thus, the Hermitian product onH leads to a Kähler structure on MQ, which is typical
of quantummodels and richer than the standard symplectic one appearing in classical
mechanics.
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Both g andω are non-singular tensor fields, thus they define bundle isomorphisms
between TMQ and T ∗MQ. As a consequence, it is possible to find two 2-contravariant
tensor fields G and Ω that are the inverses of g and ω. Their expressions in local
coordinates are

G =
n∑

j=1

(
∂

∂qj
⊗ ∂

∂qj
+ ∂

∂pj
⊗ ∂

∂pj

)

, Ω =
n∑

j=1

∂

∂qj
∧ ∂

∂pj
. (6.12)

These tensor fields define a Poisson bracket and a commutative bracket on
C∞(MQ), respectively:

{f , g} := Ω(df , dg), {f , g}+ := G(df , dg), ∀f , g ∈ C∞(MQ). (6.13)

A third element in the description of the Hilbert space structure of H is its R-
linear structure. Geometrically, it is induced by the so-called dilation vector field
defined by Δ : ψ ∈ MQ �→ (ψ,ψ) ∈ TMQ, where we use that, as MQ is a linear
space, TMQ � MQ × MQ. Moreover, the phase-change vector field takes the form
Γ : ψ ∈ MQ �→ (ψ, Jψψ) ∈ TψMQ. These vector fields satisfy the relationΓ = JΔ.
Their expressions in the coordinates (qj, pj) are

Δ =
n∑

j=1

(

qj
∂

∂qj
+ pj

∂

∂pj

)

, Γ =
n∑

j=1

(

qj
∂

∂pj
− pj

∂

∂qj

)

. (6.14)

6.3.2 Observables: Hamiltonian Dynamics and Killing Vector
Fields

The real vector space Herm(H) of physical observables on H, i.e. Hermitian oper-
ators on H, can also be given a tensor description. Every observable A ∈ Herm(H)

gives rise to a real function on MQ of the form

fA(ψ) := 〈ψ, Aψ〉, ψ ∈ MQ. (6.15)

It is immediate to verify that the two algebraic operations in Herm(H) given by

�A, B� := −i (AB − BA), [A, B]+ := AB + BA, (6.16)

are related to the brackets of functions on MQ as follows

{fA, fB} = Ω(dfA, dfB) = f[[A,B]], {fA, fB}+ = G(dfA, dfB) = f[A,B]+ .
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As in any Poisson manifold, each Hamiltonian vector field, let us say Xf , can be
associated with a function f ∈ C∞(MQ) as follows:

Xf := −Ω(df , ·) = {·, f }. (6.17)

In the particular case of functions in the form of (6.15), their Hamiltonian vector
fields satisfy the following commutation rule

[XfA , XfB ] = −Xf�A,B�
. (6.18)

Consider the particular case of the Hamiltonian vector field XfH associated with
the quadratic form fH (ψ) := 〈ψ, Hψ〉, where H is the Hamiltonian operator of a
physical system. Its integral curves correspond to the solutions of the Schrödinger
equation

i
d

dt
|ψ(t)〉 = H |ψ(t)〉, (6.19)

where we assumed, as hereafter, � = 1. The evolution operator t �→ Ut defines an
isometry of the Hermitian product onH. Hence, each Ut leaves invariant its real and
imaginary parts. Since each Ut is C-linear, its induced action onto MQ also leaves
invariant ω, J , and g. Therefore, XfH is also a Killing vector field relative to g giving
rise to a Kähler vector field.

6.3.3 Projective Hilbert Spaces as Kähler Manifolds

The probabilistic interpretation of Quantum Mechanics requires to deal with an
equivalence relation in the Hilbert space of the system, namely

|ψ1〉, |ψ2〉 ∈ H0 := H\{0}, |ψ1〉 ∼ |ψ2〉 ⇔ |ψ2〉 = λ|ψ1〉, λ ∈ C0 := C\{0}.
(6.20)

Therefore, elements describing pure quantum states must be rays rather than
vectors. In particular, for finite-dimensional systems, the space of pure states is not
C

n but the projective space CP
n−1.

The equivalence relation (6.20) coincides with the one defined by the action of the
group (C0, ·) on MQ,0 := MQ − {0}, with 0 being the point in MQ representing the
zero vector inH, the orbits of the action being the equivalence classes. The group is
Abelian and isomorphic to the direct product group of (R+, ·) by the unitary group
U (1). The fundamental vector fields of this action are spanned by the dilation Δ and
phase-change Γ vector fields. They give rise to a regular foliation FΔ,Γ on MQ,0.
Observe that, as MQ,0 is an open submanifold of MQ, any geometric object on MQ

can be restricted to MQ,0. From now onwards, this restriction is implicitly assumed,
thus simplifying the notation.
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The foliation FΔ,Γ defines a projection π : MQ,0 → P onto its set of leaves P .
The points of P represent, geometrically, the points of the projective space and
therefore they are identifiedwith pure states of the quantumsystem.Thenotation from
equivalence relations can be kept, thuswewill denote elements inP by [ψ] := π(ψ).
Due to the commutativity of Δ and Γ , their respective flows commute. Thus, it is
possible to carry out the projection π : MQ,0 → P in two steps and in any order.

If FΓ and FΔ denote respectively the regular foliations of MQ,0 by Γ and Δ,
then the set of leaves of FΓ will be denoted by R, being πMR : MQ,0 → R the
corresponding projection. Similarly, Q will stand for the set of leaves of FΔ, being
πMQ : MQ,0 → Q the corresponding projection. For every ψ ∈ MQ,0, its images by
πR and πQ will be denoted by [ψ]R ∈ R and [ψ]Q ∈ Q, respectively.

Proposition 3 The manifold Q is diffeomorphic to the unit sphere S2n−1 ⊂ R
2n,

where n denotes the complex dimension of the initial Hilbert space.

Proof The manifold MQ,0 is a 2n-dimensional manifold with a global chart φE :
MQ,0 → R

2n\{0}, defined as in (6.9). Elements ofQ are the orbits ofΔ. It is possible
to consider the immersion ιQ : Q → MQ that associates each orbit of the flow of Δ

with the only point within it having a unit norm. As the norm in MQ is equivalent to
the canonical norm in R

2n, the set ιQ(Q) is mapped onto the points of R
2n with unit

norm and hence (φE ◦ ιQ)(Q) � S2n−1.

Both R and Q are (2n − 1)-dimensional differentiable manifolds. New projec-
tions can be established on each manifold, thus completing the projection onto the
manifold P , previously defined.

Proposition 4 The vector field Δ projects onto R, defining a regular foliation.
Likewise, the vector field Γ projects onto Q, defining also a regular foliation. The
diagram shown in Fig.6.1 is commutative, i.e. the projections πRP : R → P and
πQP : Q → P satisfy that

πRP ◦ πMR = πQP ◦ πMQ = π. (6.21)

Proof The commutativity of both vector fields makes possible to project Δ ontoR,
and also Γ ontoQ. As Δ and Γ are non-zero at every point of MQ,0, their respective
projections toR and Q define regular foliations. The commutativity of the diagram
is a straightforward consequence.

An additional immersion can be defined. Namely, the projective manifold P can
be naturally mapped into the manifoldR, as it is shown next.

Proposition 5 There exists a embedding ιP : P → R such that πRP ◦ ιP = IdP .

Proof Due to the commutativity of the diagram in Fig. 6.1, for every element
of P there exists an element of Q projecting to it under πQP . Let fQR : Q →
R be the map fQR := πMR ◦ ιQ. Hence, πRP ◦ fQR(Q) = P and πRP |fQR(Q) :
fQR(Q) → P is surjective. It can be shown that it is also injective. Take ψ1, ψ2 ∈
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Fig. 6.1 The diagram
illustrates the manifolds
appearing in the study of
quantum systems. The
projections and natural
immersions are indicated

ιQ(Q), which implies that ‖ψ1‖ = ‖ψ2‖. Consider their equivalence classes [ψ1]R,

[ψ2]R ∈ R. Then, if πRP([ψ1]R) = πRP([ψ2]R), necessarily |ψ1〉 = eiα|ψ2〉 with
α ∈ R. As equivalence classes inR are defined by the action of the U (1), it is imme-
diate that [ψ1]R = [ψ2]R. Therefore, πRP is a bijection when restricted to fQR(Q).
The inverse map, defined as ιP , is thus a differentiable embedding.

The tensor fields G and Ω on MQ,0 induced by (6.12) cannot be projected onto P
since they are not invariant under Δ. We thus define two new tensor fields by

GP := fI (ψ)G − (Δ ⊗ Δ + Γ ⊗ Γ )

2
, ΩP := fI (ψ)Ω − (Δ ⊗ Γ − Γ ⊗ Δ)

2
.

(6.22)

which are projectable and also preserve the algebraic structures of functions [36, 37].
The projected tensor fields correspond to the Fubiny-Study metric of the complex
projective space [47, 48] and the symplectic and complex structure tensors giving rise
to the canonical Kähler structure on R. Regarding observables, quadratic functions
fA defined in (6.15) are not invariant by Δ and Γ . Instead, observables are to be
represented by expectation value functions, defined on MQ,0 as

eA(ψ) := 〈ψ, Aψ〉
〈ψ,ψ〉 . (6.23)

These functions are projectable, i.e. they correspond to pull-backs of functions onP .

6.4 Lie-Kähler Systems in Quantum Mechanics

It is known that Lie systems appear in the geometric study of t-dependent Schrödinger
equations [12, 31–33]. The expression of this equation in natural units (with � = 1) is

i
d

dt
|ψ(t)〉 = H (t)|ψ(t)〉, t ∈ R, (6.24)



6 Application of Lie Systems to Quantum Mechanics: Superposition Rules 97

where H (t) is a Hermitian operator on H for every t, which stands for the physical
time parameter. This operator is called the t-dependent Hamiltonian of the system.
The aim of this section is to prove that, for finite-dimensional systems, it is possible
to describe such an equation in terms of a Lie system.

Definition 5 A t-dependent Hamiltonian H (t) is called a quantum Lie system if
there exists a set of r real t-dependent functions b1(t), . . . , br(t) such that

H (t) =
r∑

j=1

bj(t)Hj, (6.25)

where the Hermitian operators H1, . . . , Hr span a real finite-dimensional Lie algebra
V H , called a quantum Vessiot-Guldberg Lie algebra of H (t).

Proposition 6 Any t-dependent Hamiltonian on a finite-dimensional Hilbert space
is a quantum Lie system.

Proof If the Hilbert space H is finite-dimensional, any basis {H1, . . . , Hn} for
Herm(H) makes possible to write a generic t-dependent Hamiltonian H (t) in the
form (6.25). For particular cases, it may be possible to find smaller quantum Vessiot-
Guldberg Lie algebras for H (t).

It is to be remarked that sometimes the Vessiot–Lie algebra of the t-dependent
Hamiltonian may be lower-dimensional and this simplifies computations. This is the
case we study next.

Theorem 3 Consider a quantum Lie system H (t) on a finite-dimensional Hilbert
space H, with V H = Lie(H1, . . . , Hr) being a quantum Vessiot-Guldberg Lie alge-
bra. The t-dependent vector field XH on the manifold MQ defined by

XH
t =

r∑

j=1

bj(t)Xj, with Xj := XfHj
, j = 1, . . . , r, (6.26)

is a Lie-Kähler system on MQ. The associated system of XH is its t-dependent
Schrödinger equation.

Proof Hamiltonian vector fields satisfy the commutation relation (6.18). If the Lie
bracket of V H is �Hj, Hk� = ∑

l cjklHl , then

[Xj, Xk ] = −Xf�Hj ,Hk �
= −

r∑

l=1

cjklXl, j, k = 1, 2, . . . , r.

Therefore, Lie(X1, . . . , Xr) is a finite-dimensional Lie algebra isomorphic to V H . As
a consequenceof theLie-ScheffersTheorem,XH is aLie systemwithLie(X1, . . . , Xr)

as a Vessiot-Guldberg Lie algebra.
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For each t ∈ R, the vector fieldXH
t is Hamiltonian with respect toω and Hamilto-

nian function on MQ associated with the operator
∑r

j=1 bj(t)Hj = H (t). As a conse-
quence, its associated differential equation is (6.24), thus proving the relation between
Lie systems and the t-dependent Schrödinger equation.

6.4.1 2-Level Lie Systems

The Hilbert space of a 2-level system is isomorphic to C
2 with its natural Hermitian

structure. Observables are represented by matrices in Herm(2), for which a basis
{σ0, σ1, σ2, σ3} is defined by

σ0 = I =
(
1 0
0 1

)

, σ1 =
(
0 1
1 0

)

, σ2 =
(
0 −i
i 0

)

, σ3 =
(
1 0
0 −1

)

. (6.27)

A quantum Lie system H (t) thus takes the form

H (t) = B0(t)σ0 +
3∑

j=1

Bj(t)σj. (6.28)

Physically, this Hamiltonian models a 1
2 -spin system coupled with a t-dependent

magnetic field given by (B1(t), B2(t), B3(t)) and a drag term due to B0(t). The t-
dependent Hamiltonian H (t) is therefore a quantum Lie system. It determines a
t-dependent Schrödinger equation of the form (6.24) in C

2 [6, 49].
Consider now the geometric formalism presented in Sect. 6.3. The Hilbert space

H ∼= C
2 is identifiedwith a 4-dimensional differentiablemanifoldMQ,where a global

chart with coordinates (q1, p1, q2, p2) exists, defined as in (6.9). The quantum Lie
system H (t) defines a Lie-Kähler system XH on MQ:

XH =
3∑

j=0

Bj(t)Xj, (6.29)

The associated system of XH is the geometrical equivalent of the Schrödinger equa-
tion (6.24) for the 2-level quantum system. The vector fields X0, X1, X2, X3 span
the Vessiot-Guldberg Lie algebra of XH . The commutation relations can be directly
computed by their coordinate expressions:
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X0 = p1
∂

∂q1
− q1

∂

∂p1
+ p2

∂

∂q2
− q2

∂

∂p2
,

X1 = p2
∂

∂q1
− q2

∂

∂p1
+ p1

∂

∂q2
− q1

∂

∂p2
,

X2 = −q2
∂

∂q1
− p2

∂

∂p1
+ q1

∂

∂q2
+ p1

∂

∂p2
,

X3 = p1
∂

∂q1
− q1

∂

∂p1
− p2

∂

∂q2
+ q2

∂

∂p2
. (6.30)

As expected, these vector fields span a 4-dimensional Lie algebra isomorphic to
Herm(2):

[X0, ·] = 0, [X1, X2] = −2X3, [X2, X3] = −2X1, [X3, X1] = −2X2. (6.31)

The vector fieldsX0, X1, X2, X3 areHamiltonianwith respect toω. Their Hamiltonian
functions are

h0(ψ) = 〈ψ, σ0ψ〉 = 1

2
(q2

1 + p2
1 + q2

2 + p2
2),

h1(ψ) = 〈ψ, σ1ψ〉 = q1q2 + p1p2,

h2(ψ) = 〈ψ, σ2ψ〉 = q1p2 − p1q2,

h3(ψ) = 〈ψ, σ3ψ〉 = 1

2
(q2

1 + p2
1 − q2

2 − p2
2), (6.32)

with ιXα
ω := ω(Xα, ·) = dhα forα = 0, 1, 2, 3.Notice thath1, h2, h3 are functionally

independent, but h20 = h21 + h22 + h23. The Hamiltonian functions span a Lie algebra
isomorphic to Herm(2):

{h0, ·} = 0, {h1, h2} = 2h3, {h2, h3} = 2h1, {h3, h1} = 2h2. (6.33)

The vector fields X0, X1, X2, and X3 are Killing vector fields with respect to g,
namelyLXα

g = 0 for α = 0, 1, 2, 3. Using this, we can prove in an intrinsic geomet-
ric way that

I1 = g(X0, X0), I2 = g(X1, X1) + g(X2, X2) + g(X3, X3),

I3 = h21 + h22 + h23, I4 = h0 (6.34)

are constants of the motion for XH . This example is relevant because it illustrates
how to define the above constants of the motion geometrically in terms of g and the
Hamiltonian functions due to ω.
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6.4.2 Schrödinger Equations and Lie-Kähler Systems

Theorem 4 Every t-dependent Schrödinger equation on a finite-dimensional Hilbert
space H defines a Lie-Kähler system on the associated Kähler manifold MQ with a
Vessiot-Guldberg Lie algebra that is isomorphic to a subalgebra of Herm(H).

Proof The relation between t-dependent Schrödinger equations on H and Lie sys-
tems on MQ was clarified in Theorem 3. The Vessiot-Guldberg Lie algebra of XH

is isomorphic to the quantum Vessiot-Guldberg Lie algebra V H of H (t), which in
turn is a subalgebra of Herm(H), as proved in Proposition 6. The preservation of
the Kähler structure of MQ remains from the results given in Sect. 6.3.2. From this
follows that the Vessiot-Guldberg Lie algebra of XH consists of Hamiltonian vector
fields and Killing vector fields relative to the Kähler structure on MQ. Then, XH is a
Lie-Kähler system.

Proposition 7 The space IX of time-independent constants of motion for a Lie-
Kähler system X is a Poisson algebra with respect to the Poisson bracket of the
Kähler structure and a commutative algebra relative to the bracket induced by the
Riemannian structure.

Proof This proposition stems from a simple differential geometric computation. Lie
derivatives and contractions satisfy the following relation [50, 51]:

[LX , ιY ] = ι[X ,Y ], (6.35)

for any pair of vector fields X , Y .
Any time-independent constant of motion f ∈ IX satisfies Xt(f ) = LXt (f ) = 0

for any t ∈ R. On the other hand, the Hamiltonian vector field Xf associated with
f satisfies df = ιXf ω, with ω the symplectic structure on the Kähler manifold. The
two relations combined yield the following result:

d(LXt (f )) = LXt (df ) = 0 ⇒ LXt (ιXf ω) = 0 ⇒ ι[Xt ,Xf ]ω = 0,

where the fact that X is a Lie-Kähler system, hence LXt ω = 0, has been used.
The Poisson bracket of any two functions f , f ′, as defined in (6.13), is given by

{f , f ′} = ω(Xf , Xf ′). (6.36)

Its Lie derivative with respect to a vector field Y ∈ X(MQ) satisfies the following
relation [40, p.117]:

LY ({f , f ′}) = LY (ω(Xf , Xf ′) = (LY ω)(Xf , Xf ′)

+ ω([Y , Xf ], Xf ′) + ω(Xf , [Y , Xf ′ ]).

In particular, this relation holds for Y = Xt . If f and f ′ are constants of motion and as
Y is a Hamiltonian vector field, [Y , Xf ] is the Hamiltonian vector field of the function
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Yf = 0 and the right-hand side of the equality is zero, hence

LXt ({f , f ′}) = 0, ∀ f , f ′ ∈ IX . (6.37)

Therefore {f , f ′} is also a constant of motion. Likewise, the symmetric product
defined by the metric g provided by the Kähler structure satisfies a similar relation.

6.5 Lie Systems on the Quantum Quotient Manifolds

As fully explained in Sect. 6.3.3, the proper description of the states of quantum
systems requires an analysis of the fibration FΔ,Γ of MQ obtained by integrating
the distribution spanned by the vector fields Γ and Δ. This fibration is regular on
MQ,0 = MQ − {0}, and we can define a projection onto the manifold of leaves of the
foliation. Furthermore, as Δ,Γ commute, the projection can be decomposed into
two steps, and carried out in any order.

As a result, different quotient manifolds R, Q, and P are obtained. They are
collectively referred to as the quantum quotient manifolds. The diagram in Fig. 6.2
reproduces the existing maps and immersions. Also, the relevant structures in each
manifold are indicated. The following sections consider the properties of Lie systems
determined by t-dependent Schrödinger equations on each of the quantum quotient
manifolds.

Fig. 6.2 The diagram illustrates the manifolds appearing in the study of quantum systems. The
projections and natural immersions are indicated. Eachmanifold is labelled according to the relevant
geometric structure it possesses. These structures are useful in the determination of superposition
rules for Lie systems
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6.5.1 Lie Systems on the Manifold Q

Consider the immersion ιQ : Q → MQ,0, as indicated in Fig. 6.2. Since the unitary
evolution inH determined by the Schrödinger equation preserves the normof vectors,
its geometrical counterpart on MQ,0 leaves the unity sphere ιQ(Q) invariant. Thus, it
seems natural at first to restrict the associate Lie-Kähler system with the unity sphere
Q. Nevertheless, as shown below, such a restriction is generally no longer neither a
Lie-Kähler system nor a Lie-Hamilton one.

Proposition 8 Consider the Lie-Kähler system XH on MQ,0 determined by a quan-
tum Lie system H (t). The Lie-Kähler system XH can be projected onto Q giving rise
to a Lie system XH

Q possessing a Vessiot-Guldberg Lie algebra VQ of Hamiltonian
vector fields with respect to the presymplectic form ωQ := ι∗Qω with ιQ : Q ↪→ MQ.

If V XH
Q = VQ, then XH

Q is not a Lie-Hamilton system.

Proof For a generic quantum Lie system H (t), the Vessiot-Guldberg Lie algebra V
of XH is the Lie algebra of fundamental vector fields of the unitary action on MQ,
namely ϕM : U (H) × MQ → MQ, as proved in Proposition 6. Recall that unitary
action preserves the Hermitian product in H. Hence, the norm ‖ψ‖ induced by
the metric of H is invariant under ϕM and, in consequence, a first-integral of its
fundamental vector fields, which span V XH

. The restrictions of the elements of V XH

to Q become tangent to ιQ(Q) and therefore they span a finite-dimensional Lie
algebra of vector fields VQ on Q. The Lie-Kähler system XH , being generated by
the elements in V XH

, can also be restricted to ιQ(Q). It gives rise to a Lie system
XH

Q on Q admitting a Vessiot-Guldberg Lie algebra VQ.
The embedding ιQ : Q → MQ induces a presymplectic structure ωQ = ι∗Qω on

Q, where ω is the natural symplectic structure on MQ. Since the elements of V XH

are Hamiltonian vector fields on MQ with Hamiltonian functions hH (ψ) = 〈ψ, Hψ〉
with H ∈ Herm(H), their restrictions to Q are Hamiltonian relative to the presym-
plectic form ωQ with Hamiltonian functions ι∗QhH . Therefore, the algebra VQ on Q
is composed of Hamiltonian vector fields relative to the presymplectic structure ωQ.

AsQ is an orbit of ϕM , then TQ = DVXH |Q, which is a distribution with odd rank
2n − 1. From assumption, V XQ = VQ, and hence DXQ = DVQ = DV XH |Q = TQ.
The so-called no-go Theorem for Lie-Hamilton systems [26] states that previous
conditions ensure that XH

Q is not a Lie-Hamilton system.

A Dirac structure is a generalisation of presymplectic and Poisson structures,
which can also be associatedwithLie systems. Indeed, aDirac structure on amanifold
defines a foliation on it by presymplectic leaves in a similar way to the canonical
foliation by symplectic leaves on any Poissonmanifold. In particular, a presymplectic
form on a manifold defines thus a Dirac structure on it. Hamiltonian vector fields
on these Dirac structures are exactly the Hamilton vector fields of the structures
originating them [29]. This fact makes possible to prove the following.

Corollary 1 The Lie system XH
Q on Q determined by a quantum Lie system H (t) is

a Dirac-Lie system with respect to the Dirac structure induced by ωQ.
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6.5.2 Lie Systems on the Manifold R

The next results prove that the projection of the restriction of the Lie-Kähler system
XH to MQ,0 onto R exists and it is a Lie-Hamilton system. It can be endowed with
a natural coordinate system coming from this fact.

Lemma 1 The manifold R admits a local coordinate system on a neighbourhood
of each point given by the restrictions to R of 2n − 1 functions fα(ψ) = 〈ψ, Hαψ〉,
for α = 1, 2, . . . , 2n − 1, for certain traceless observables Hα ∈ Herm(H).

Proof For n > 1 any two elements of MQ,0 with the same norm can be connected
by the action of an element of SU (n). Hence, the special unitary action ϕ : SU (n) ×
MQ,0 → MQ,0, with n > 1, has (2n − 1)-dimensional orbits, which are embedded
submanifolds of MQ,0. Since dim SU (n) = n2 − 1 ≥ 2n − 1 for n > 1, there exists
for any point of MQ,0 an open neighbourhood A0 containing it and where 2n − 1
fundamental vector fields of ϕ are linearly independent at each point. As they are
also Hamiltonian vector fields, their Hamiltonian functions, which can be taken
of the form fα(ψ) = 〈ψ, Hαψ〉, with Hα ∈ Herm(H) being traceless observables
and α = 1, 2, . . . , 2n − 1, are functionally independent on A0. These functions are
invariant under the natural action of U (1) on MQ,0, and give rise to well-defined
functions f1|R, . . . , f2n−1|R, on an open subset ofR. As f1, . . . , f2n−1 are functionally
independent on A0 ⊂ MQ,0, then f1|R, . . . , f2n−1|R are functionally independent and
provide a local coordinate system on R.

Lemma 1 provides a method to define coordinate systems on the quantum quo-
tient manifoldR of any finite-dimensional quantum system. To illustrate this result,
consider again the 2-level system described in Sect. 6.4.1. Hamiltonian functions
h1, h2, h3 defined in (6.32) satisfy the conditions of Lemma 1, hence they provide a
coordinate system onR by

φσ (ψ) = (h1(ψ), h2(ψ), h3(ψ)) = (x1, x2, x3) ∈ R
3

⇒

⎧
⎪⎨

⎪⎩

x1 = q1q2 + p1p2 = 2Re (z∗
1z2),

x2 = q1p2 − q2p1 = 2Im (z∗
1z2),

x3 = 1

2
(q2

1 + p2
1 − q2

2 − p2
2) = (|z1|2 − |z2|2),

(6.38)

with notation (z1, z2) = (q1 + ip1, q2 + ip2)/
√
2. Simple computations show that

φ−1
σ (x1, x2, x3) is the equivalence class of an element ofR for every (x1, x2, x3) ∈ R

3
0

and R ∼= R
3
0.

Once defined an appropriate differentiable structure on the manifold R, the fol-
lowing results show the properties of the Lie systems representing the t-dependent
Schrödinger equation on this manifold.

Proposition 9 The t-dependent Schrödinger equation, when restricted to MQ,0, can
be projected onto R originating a Lie-system XH

R possessing a Vessiot-Guldberg Lie
algebra VR � su(H) of Hamiltonian vector fields with respect to the projection of
Ω on MQ,0 onto R.
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Proof The C-linear Lie group action ϕM : U (H) × MQ,0 → MQ,0 induces, due to
its C-linearity, an action φR onR such that the map πMR is equivariant, as follows:

ϕR : U (H) × R −→ R,

(g, [ψ]R) �−→ [ϕM (g, ψ)]R.
(6.39)

Let VM denote the algebra of fundamental vector fields of ϕM . As a consequence
of (6.39), vector fields in VM project ontoR giving rise to a new finite-dimensional
Lie algebra of vector fields VR. The projection map πMR : MQ,0 → R induces a Lie
algebra morphism πMR∗|VM : VM → VR. Then, the restriction to MQ,0 of the Lie-
Kähler systemXH describing Schrödinger equation also projects ontoR, giving rise
to a Lie system XH

R .
It can be proved that XH

R admits a Vessiot-Guldberg Lie algebra isomorphic to
su(H). As VM � u(H) � R ⊕ su(H), the kernel of πMR∗|VM , which is an ideal
of VM , may be either zero, isomorphic to R, to su(H) or to u(H). The one-
parameter group of diffeomorphisms induced by the vector field Γ is given by
ΦΓ

t : ψ ∈ MQ,0 �→ eitψ ∈ MQ,0. Hence, πMR∗(Γ ) = 0 and Γ belongs to the center
of VM . As VR 
= 0 and in view of the decomposition of VM , then ker πMR∗ � 〈Γ 〉
and Im πMR∗|VM � su(H). Thus, the projection of the Lie-Kähler system XH onto
R admits a Vessiot-Guldberg Lie algebra VR � su(H).

In the case of 2-level systems, a simple computation shows that there exist vector
fields Yα on R such that πMR∗(Xα) = Yα for α = 1, 2, 3. Indeed,

Y1 = −2x3
∂

∂x2
+ 2x2

∂

∂x3
, Y2 = 2x3

∂

∂x1
− 2x1

∂

∂x3
, Y3 = −2x2

∂

∂x1
+ 2x1

∂

∂x2
.

(6.40)

The Lie brackets between these vector fields read

[Yj, Yk ] = −2
3∑

l=1

εjklYl, j, k = 1, 2, 3. (6.41)

The projection of the Lie-Kähler system XH given in (6.26) onto R, i.e. the
t-dependent vector field XH

R on R satisfying (XH
R)t = πMR∗(Xt), becomes

XH
R =

3∑

j=1

Bj(t)Yj, t ∈ R. (6.42)

The commutation relations in (6.41) show that the Vessiot-Guldberg Lie algebra of
XH

R is isomorphic to Herm(2) ∼= su∗(2). Therefore, XH
R is a Lie system.

Proposition 10 The Lie system XH
R is a Lie-Hamilton system with respect to the

bivector field πMR∗(Ω), which is a Poisson tensor.
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Proof From formulas (6.12) and (6.14), one obtains thatLΓ Ω = 0 and therefore the
Poisson bivector Ω on MQ,0 can be projected onto R. Additionally,

πMR∗([Ω,Ω]SN ) = [πMR∗(Ω), πMR∗(Ω)]SN , (6.43)

with [·, ·]SN being the Schouten-Nijenhuis bracket [52]. Thus, πMR∗(Ω) is a Poisson
bivector onR. The vector fields Xα spanning the Vessiot-Guldberg Lie algebra VM of
XH are Hamiltonian relative to the restrictions to MQ,0 of the functions hα in (6.32).
Such Hamiltonian functions are invariant with respect to the action of U (1) on MQ,0

andhence projectable ontoR. The projectionsπMR∗(Xα) are thusHamiltonian vector
fields with Hamiltonian functions xα ∈ C∞(R) such that hα = π∗

MR(xα). Therefore,
the Vessiot-Guldberg Lie algebra VR on R consists of Hamiltonian vector fields
relative to πMR∗(Ω).

Proposition 11 The Vessiot-Guldberg Lie algebra of the Lie system XH
R consists of

Killing vector fields with respect to the metric induced by the projection of the tensor
field G onto R.

Proof The tensor field G projects ontoR, as the Lie derivative of G with respect toΓ

is zero. Since G comes from a Riemannian metric, it is non-degenerate, and so is its
projection ontoR, giving rise to a Riemannian metric onR. The vector fields of VM

are Killing relative to G and projectable under πMR∗. Therefore, their projections,
namely the elements of VR, are also Killing vector fields relative to the projection
of G ontoR and span a Vessiot-Guldberg Lie algebra VR of Killing vector fields.

6.5.3 Lie-Kähler System on the Projective Manifold P

As proved above, it is possible to project the Lie-Kähler system XH associated
with a quantum Lie system H (t) onto the projective manifold P . Additionally, we
prove in this section that this manifold is endowed with a Kähler structure that is
preserved under the evolution ofXH . Thus, the t-dependent vector field representing
the projective t-dependent Schrödinger equation happens to be again a Lie-Kähler
system.

Lemma 2 The Lie-Kähler system XH on MQ,0 related to a t-dependent Schrödinger
equation is projectable under π : MQ,0 → P onto a Lie system XH

P .

Proof Let ϕM : U (H) × MQ,0 → MQ,0 be the action the unitary group on MQ,0.
There exists a natural action of U (H) onto P given by

ϕP : U (H) × P → P,

(g, [ψ]P) �→ [ϕM (g, ψ)]P .
(6.44)

Then, the map π : MQ,0 → P is equivariant relative to ϕM and ϕP . Let VM and VP
denote the Lie algebras of fundamental vector fields of ϕM and ϕP , respectively.
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Each vector field of VM projects onto a fundamental vector field of ϕP . As XH takes
values in VM , this ensuresXH

P,t = π∗(XH
t ) to exist for each t ∈ R. Thus,XH

P is a Lie
system whose Vessiot-Guldberg Lie algebra is VP .

Definition 6 Given a Schrödinger equation (6.24), withXH being its corresponding
Lie-Kähler system on MQ, the projective Schrödinger equation on P is the system
of differential equations

dξ

dt
= XH

P (t, ξ), ξ ∈ P, ∀t ∈ R, (6.45)

where XH
P is the projection onto P of XH via π : MQ,0 → P .

Theorem 5 The system (6.45) is a Lie-Kähler system with respect to the natural
Kähler structure on P and a Vessiot-Guldberg Lie algebra isomorphic to su(H).

Proof In view of Theorem 4, the vector fields of VM leave invariant G and Ω ,
i.e. LX Ω = LX G = 0 for every X ∈ VM . Since these vector fields are projectable
onto P in virtue of Lemma 2, their projections span a Vessiot-Guldberg Lie alge-
bra VP for XH

P of Kähler vector fields relative to the natural Kähler structure on
P . The natural projection map π : MQ,0 → P induces a Lie algebra morphism
π∗|VM : VM → VP . As VM � u(H) � R ⊕ su(H), the kernel of π∗|VM , which is an
ideal of VM , may be either zero, isomorphic to R, to su(H) or to u(H). The one-
parameter group of diffeomorphisms induced by the vector field Γ on MQ,0 is given
byΦΓ

t : ψ ∈ MQ,0 �→ eitψ ∈ MQ,0. Hence, π∗(Γ ) = 0 and Γ belongs to the kernel.
Since VP 
= {0} and in view of the decomposition of VM , then ker π∗ � 〈Γ 〉 and
Im π∗|VM � su(H). Thus, VP � su(H).

6.6 Superposition Rules for Schrödinger Equations

It has been proved in the preceding section that Schrödinger equations are a particular
type of Lie systems. Thus, the tools developed for the study of Lie systems can
be employed in order to describe quantum evolution. In particular, it is possible to
devise superposition rules that give as a result the general solution to the Schrödinger
equation, either on MQ or on any of the quantum quotient manifolds.

6.6.1 Particular Solutions of the Schrödinger Equation

It is possible to determine, for each manifold, the necessary number of particular
solutions in order to derive a superposition rule. The algorithm that gives the number
of necessary particular solution has been presented in [6, 20], and described in
Theorem 2. The aim of the present section is to apply this algorithm to Lie-Kähler
systems defined on MQ. In order to obtain an appropriate result, some physical
considerations have to be made.
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Due to the expression (6.25) of quantum Lie systems, the general Vessiot-
Guldberg Lie algebra of a generic Lie-Kähler system on MQ is isomorphic to
O = Herm(H). From a physical perspective, however, only vector fields with non-
zero projection onto P are relevant. This is not the case of the Hamiltonian vector
field XI associated with the identity observable. This element, and any other propor-
tional to it, is to be removed from the Vessiot-Guldberg algebra of the Lie-Kähler
system. The result is isomorphic to the Lie algebra of traceless Hermitian opera-
tors on H, which is itself isomorphic to su(H). This is the Lie algebra of traceless
skew-Hermitian operators on H, and the Lie algebra associated with the Lie group
SU (H) of special unitary transformations on H. Because of this physical property,
an interesting result can be obtained, as seen next.

Theorem 6 Every Lie-Kähler system XH on MQ with a traceless operator H (t)
admits a superposition rule depending on n − 1 particular solutions.

Proof Consider a traceless quantum Lie-system H (t) on H and its corresponding
Lie systemXH on MQ. In view of Theorem 4, this system admits a Vessiot-Guldberg
Lie algebra V H of Kähler vector fields isomorphic to su(H). The first step to derive
a superposition rule is the determination of the smallest m ∈ N such that the diagonal
prolongations to M m

Q of the vector fields of V span a distribution of rank dim V at a
generic point. The elements of V H are fundamental vector fields of the standard linear
action of SU (H) on MQ (thought of as aC-linear space). The diagonal prolongations
of V H to M m

Q span the tangent space to the orbits of the Lie group action

ϕm
M : SU (H) × M m

Q −→ M m
Q

(U ;ψ1, . . . , ψm) �−→ (Uψ1, . . . , Uψm).
(6.46)

The fundamental vector fields of this action span a distribution of rank dim V at
ξ ∈ M m

Q if and only if its isotropy groupOξ at ξ ∈ M m
Q is discrete.With the hypothesis

m = n − 1, the elements U ∈ Oξ , with ξ := (ψ1, . . . , ψn−1) ∈ M n−1
Q , satisfy

Uψj = ψj, j = 1, 2, . . . , n − 1. (6.47)

At a generic point of M n−1
Q , the components ψ1, . . . , ψn−1 can be assumed to be

linearly independent elements (over C). Then, the knowledge of the action of U on
these elements fixes U on 〈ψ1, . . . , ψn−1〉C ⊂ MQ, where it acts as the identity map.
If ψ is orthogonal to 〈ψ1, . . . , ψn−1〉C with respect to the natural Hermitian product
onH, thenUψ must also be orthogonal to 〈ψ1, . . . , ψn−1〉C because of (6.47) and the
unitarity ofU . Therefore,Uψ is proportional toψ . SinceU ∈ SU (H) andUψ = ψ ,
thenU = Id. Therefore, the isotropy group of ϕm is trivial at a generic point ofM n−1

Q ,
the fundamental vector fields of ϕm

M are linearly independent over R and there exists
a superposition rule depending on n − 1 particular solutions.

Remark 1 AsH is a linear space and the Schrödinger equation is linear, there always
exists a linear superposition rule for the Schrödinger equation depending on n par-
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ticular solutions. Theorem 6 proves the existence of a different superposition rule,
not necessarily linear, depending only on n − 1 particular solutions.

It is worth noting that, if m < n − 1, then the isotropy group for ϕm is not trivial at
any point of M m

Q . Given m linearly independent elements (ψ1, . . . , ψm) over C, there
exist special unitary transformations on MQ acting as the identity on 〈ψ1, . . . , ψm〉C
and leaving stable its orthogonal complement. Hence, the isotropy group on any
point of M m

Q is not discrete.
Since the elements of U (H) act on MQ preserving the norm relative to H, the

Lie group action ϕm
M given in the proof of the previous theorem can be restricted to

Qm. In view of this, the previous proof can be slightly modified to prove that the
restriction of ϕm

M toQm have a trivial isotropy group at a generic point form = n − 1.
This proves the following corollary.

Corollary 2 Every Lie system XH
Q on Q with a Vessiot-Guldberg Lie algebra V H ⊂

VQ isomorphic to su(H) admits a superposition rule depending on n − 1 particular
solutions.

Similar results can be proved for the Lie systems on the remaining quantum
quotient manifold R and P , as seen next.

Theorem 7 Every Lie system XH
R on R admits a superposition rule depending on

n particular solutions.

Proof In view of Proposition 9, the Lie system XH
R admits a Vessiot-Guldberg Lie

algebra VR of fundamental vector fields isomorphic to su(H). Also the proof of
Proposition 9 shows that the diagonal prolongation of the elements of VR toRm are
the fundamental vector fields of the Lie group action

ϕm
R : SU (H) × Rm → Rm

(U ; [ψ1]R, . . . , [ψm]R) �→ ([Uψ1]R, . . . , [Uψm]R).
(6.48)

The derivation of a superposition rule for XH
R requires the determination of the

necessary number m of particular solutions. This number is the smallest positive
integer number such that the diagonal prolongations of the vector fields in VR be
linearly independent at a generic point. This occurs at ξ ∈ Rm if and only if the
isotropy group of this action at ξ is discrete. If m = n, then the elements of the
isotropy group of ϕn

R at a generic point (ψ1, . . . , ψn) ∈ Rn satisfy

U [ψj]R = [ψj]R, j = 1, 2, . . . , n. (6.49)

At a generic point ofRn, the elementsψ1, . . . , ψn are linearly independent (over C).
In view of (6.48) and (6.49), the operator U diagonalises on the basis ψ1, . . . , ψn.
In particular, the conditions (6.49) show that a fixed U ∈ SU (H), which is acting on
the elements [ψj]R, must satisfy that Uψi = eiθiψi for certain θi ∈ [0, 2π [. Since
U ∈ SU (H) ⊂ U (H), then 〈Uψi, Uψj〉 = 〈ψi, ψj〉 for i, j = 1, 2, . . . , n. Hence,
ei(θj−θi)〈ψi|ψj〉 = 〈ψi|ψj〉 for i, j = 1, . . . , n. At a generic point, the elements



6 Application of Lie Systems to Quantum Mechanics: Superposition Rules 109

ψ1, . . . , ψn are not orthogonal and therefore θi − θj ∈ 2πZ for all i, j = 1, . . . , n.
Thus, all factors in the diagonal of the matrix representation of U must be equal.
As U ∈ SU (H), the multiplication of such diagonal elements must be equal to 1.
This fixes U = ei2πk/nIdH for k ∈ Z. Therefore, the stability group of ϕn

R is discrete
at a generic point of Rn, the fundamental vector fields of ϕn

R are linearly indepen-
dent over R at a generic point and XH

R admits a superposition rule depending on n
particular solutions.

As presented in Fig. 6.2, the projective manifold P can be embedded naturally
within R. Additionally, the projection πRP : R → P is equivariant relative to the
the Lie group action of SU (H) on R and the action ϕP of SU (H) on P . Following
the same line of reasoning as in Corollary 2, the following result can be proved.

Corollary 3 Every Lie-Kähler system on P admits a superposition rule depending
on n particular solutions.

6.6.2 Constants of Motion and Superposition Rules

The next step in order to obtain the superposition rules for Schrödinger equations
is the computation of constants of motion. The characterisation of Lie systems
on the relevant manifold makes this task easier. As shown next, it is possible to
describe a general method so as to obtain constants of motion for Lie-Kähler sys-
tems. This method could have interesting applications in order to obtain solutions
for the Schrödinger equation, as it can easily be implemented in numerical com-
putations. Thus, Lie systems prove to be a powerful tool in the computation of the
dynamics of quantum systems.

The superposition rule is derived through a number of constant of motions of
the diagonal extension of the Lie system to M n

Q. The number of necessary functions
is equal to the dimension of the manifold MQ. Thus, the superposition rule for the
Schrödinger equation on MQ is obtained in terms of 2n functions on M n

Q. These
functions are first integrals for the diagonal prolongationXH [n], and hence for all the
diagonal prolongations X [n]

α , with α = 1, 2, . . . , r, of the vector fields spanning the
Vessiot-Guldberg Lie algebra of XH .

Lemma 3 Consider the volume form ΩH on the complex Hilbert space H defined
in the given coordinate system as

ΩH := dz1 ∧ · · · ∧ dzn. (6.50)

Let ΩR, ΩI be the n-forms on MQ defined as in terms of the real and imaginary parts
of ΩH:

(ΩR)ψ(v1, . . . , vn) := √
2nnReΩH (|v1〉, . . . , |vn〉) ,

(ΩI )ψ(v1, . . . , vn) := √
2nn ImΩH (|v1〉, . . . , |vn〉) ,

(6.51)
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for any ψ ∈ MQ and any set v1, . . . , vn ∈ TψMQ. These n-forms are invariants of
Lie-Kähler systems associated with traceless quantum Lie systems.

Proof The value of ΩH on a set of tangent vectors |ψ1〉, . . . , |ψn〉 ∈ TψH can be
directly computed by the determinant of their coordinates asΩH(|ψ1〉, . . . , |ψn〉) =
det

(
ψ

j
k

)
, with ψ

j
1, . . . , ψ

j
n ∈ C the coordinates of |ψ j〉 in the given basis, for j =

1, 2, . . . , n. Then, as

ΩH(e−itH |ψ1〉, . . . , e−itH |ψn〉) = Det (e−itH )ΩH(|ψ1〉, . . . , |ψn〉)
= e−itTrH ΩH(|ψ1〉, . . . , |ψn〉), (6.52)

the volume form is invariant for any traceless Hamiltonian H .

Lemma 4 The functions I c
1 , I s

1, . . . , I c
n , I s

n : (MQ)n → R defined at the point
(ψ(0), . . . , ψ(n−1)) as

Ic
j := g[n](Δ(0), S0j(Δ

(j))) =
n∑

k=1

(q(0)
k q

(j)
k + p(0)

k p
(j)
k ),

I s
j := g[n](Γ (0), S0j(Δ

(j))) =
n∑

k=1

(q(0)
k p

(j)
k − p(0)

k q
(j)
k ),

j = 1, . . . , n − 1;

Ic
n := Ω

[n]
R

(
Δ(0), S01(Δ

(1)), . . . , S0(n−1)(Δ
(n−1))

)
= √

2n nRe(det(ψ(0), . . . , ψ(n−1))),

I s
n := Ω

[n]
I

(
Δ(0), S01(Δ

(1)), . . . , S0(n−1)(Δ
(n−1))

)
= √

2n n Im(det(ψ(0), . . . , ψ(n−1))),

(6.53)
with Srs being the (1,1)-tensor field on M n

Q that interchanges components r, s of
vector fields on the product manifold, i.e. Tπr(SrsX ) = Tπs(X ), for any vector field
X on M n

Q, πk representing the canonical projection on the k–th component of the
product manifold, are constants of motion for the diagonal prolongation XH [n] of
the Lie-Kähler system XH on MQ defined by a traceless quantum Lie system H (t).
These functions satisfy the relations

(J (j) − J (0))(dI c
j ) = dI s

j , j = 1, 2, . . . , n, (6.54)

where J (k) represents the complex structure tensor corresponding to the k–th copy
of M n

Q and the matrix of partial derivatives of these functions is regular:

det

(
∂Ij

∂ξ
(0)
k

)


= 0, with I = (I c
j , I s

j ), ξ (0) = (q(0)
j , p(0)

j ). (6.55)

Proof TheLie-Kähler system is decomposed as in (6.26). ThevectorfieldsX1, . . . , Xr

are Kähler vector fields relative to the Kähler structure (g, ω, J ) on MQ. Therefore,
their diagonal prolongations X [n]

α are Kähler relative to the diagonal prolongation
(g[n], ω[n], J [n]) to (MQ)n of the Kähler structure (g, ω, J ).
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Similarly, if X is a Hamiltonian vector field relative to ω with Hamiltonian func-
tion hX , then X [n] is a Hamiltonian vector field with Hamiltonian function h[n]

X . As
the vector fields X [n]

1 , . . . , X [n]
m are Killing vector fields with respect to g[n] and Lie

symmetries of the tensor fields Srs for r, s = 0, 1, 2, . . . , n − 1 and r 
= s, the func-
tions I c

j , I s
j for j = 1, . . . , n − 1 are first integrals for the X [n]

1 , . . . , X [n]
m and there-

fore they are constants of motion for XH [n]. As (g[n], ω[n], J [n]) conforms a Kähler
structure, the functions satisfy by definition the relation (J (k) − J (0))(dI c

k ) = dI s
k , for

k = 1, . . . , n − 1. Observe that these functions are first-integrals not only for X [n]
α ,

but also for Γ [n].
As the vector fields X [n]

α are Kähler, then I c
n , I s

n are first integrals of these vector
fields and they are also constants of motion of XH [n]. It is worth noting that since the
one-parameter group of diffeomorphisms ofΓ [n] is given by themultiplication action
of U (1) on MQ, the functions I c

n and I s
n are not invariant under these multiplications

and such functions are not first-integrals of Γ [n].
It remains to be proved that the determinant (6.55) of the matrix of derivatives

with respect to q(0)
1 , p(0)

1 , …, q(0)
n , p(0)

n is not zero. Observe that the pairs of func-
tions (I c

j , I s
j ) and (I c

j′ , I s
j′), with j, j′ = 1, 2, . . . , n, depend on different variables if

j 
= j′, so their derivatives are functionally independent functions. Also, the relation
(J (n) − J (0))(dI c

n ) = dI s
n proves that I c

j and I s
j are functionally independent for any

j = 1, 2, . . . , n. Thus, the determinant (6.55) cannot vanish (at a generic point).

Hencewe can define these constants of themotion as a local chart forM n
Q . Consider

thus, with the functions defined in (6.53), the following system of equations:

{
I c
j (ψ(0), ψ(1), . . . ψ(n−1)) = k2j−1,

I s
j (ψ

(0), ψ(1), . . . ψ(n−1)) = k2j,
j = 1, 2, . . . , n. (6.56)

The solution ψ(0) to the system can be obtained, at least locally, in terms of the
coordinates of ψ(1), …, ψ(n−1) and 2n real constants k1, …, k2n. In other words,
Lemma 4, in particular equation (6.54), guarantees that the functions are functionally
independent and the system (6.56) can be solved locally for ψ(0).

A non-linear superposition rule for the Schrödinger equation on MQ depending
on n − 1 particular solutions has thus been obtained. This applies to the case when
the Schrödinger equation is determined by a t-dependent traceless Hamiltonian. The
superposition rule can be derived from the constants of motion computed on M n

Q for
the diagonal prolongationXH [n] of the Lie-Kähler systemXH . It is possible to obtain
an analytic result because of the simple expression of the constants of the motion as
functions of the coordinates of MQ. A similar procedure could be carried out in the
projective manifold P , as it also has a Kähler structure. However, a general result
as the one presented above would be, at least, much more complicated. This is due
to P lacking a global chart. Therefore, it will not be computed for the general case.
Nevertheless, it is possible to derive a superposition rule for simple cases.

It is to be remarked that the process of superposition of two states in Quantum
Mechanics has been studied from a geometric point of view by different authors
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Fig. 6.3 Diagram of the
differentiable manifolds
appearing in the study of
2-level quantum systems.
The number m under each
manifold represents the
number of particular
solutions of the Schrödinger
equation determining the
general solution

(see [53–56]). Our goal in this paper is different, since we are finding a rule for
the superposition of solutions of the Schrödinger equation, giving rise to its general
solution. In the following Section, we illustrate the construction for a simple 2-level
system.

6.7 Superposition Rules for 2-Level Systems

This section illustrates the theory presented in the previous section by describing
superposition rules for 2-level systems on MQ and on the quantum quotient mani-
folds. Recall the existing commutative diagram presented in Fig. 6.2. The diagram
is reproduced in Fig. 6.3, where under each space the smallest number of particular
solutions for its corresponding superposition rule appears.

On each space, there exists a Lie system admitting a Vessiot-Guldberg Lie algebra
of Hamiltonian vector fields relative to different compatible geometric structures,
which in turn makes possible to obtain, in a geometric way, their superposition rules.
The following subsections provide these superposition rules, their relevant geometric
properties and their potential applications in Quantum Mechanics.

6.7.1 Superposition Rule for a 2-Level System on MQ andQ

Consider a t-dependent vector field XH on MQ of the form

XH
t =

3∑

j=1

Bj(t)Xj, t ∈ R. (6.57)

It is an immediate consequence of Theorem 4 thatXH is a Lie-Kähler system whose
Vessiot-Guldberg Lie algebra V = 〈X1, X2, X3〉, with X1, X2, X3 given by (6.30),
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consists of Kähler vector fields relative to the standard Kähler structure (g, ω, J ) on
MQ. Also, XH

t commutes for any t ∈ R with the phase change vector field Γ and
with the dilation vector field Δ, namely Γ and Δ are Lie symmetries of XH .

The superposition rule for XH depends on a number m of particular solutions,
which is the smallest integer such that the diagonal prolongations to M m

Q � (
R

4
)m

of
X1, X2, X3 are linearly independent at a generic point [6]. The coordinate expressions
for X1, X2, X3, given in (6.30), show that they are already linearly independent at a
generic point of MQ. Hence m = 1, i.e. the superposition rule does depend on a mere
particular solution. This is a lower number than in the case of the standard quantum
linear superposition rule, which depends on two particular solutions.

The functions that determine the superposition rule are given by Lemma 4:

I c
1 (ψ

(0), ψ(1)) :=g[2](Δ(0), S01Δ
(1)) = q(0)

1 q(1)
1 + p(0)

1 p(1)
1 + q(0)

2 q(1)
2 + p(0)

2 p(1)
2 ,

I s
1(ψ

(0), ψ(1)) :=ω[2](Δ(0), S01Δ
(1)) = q(0)

1 p(1)
1 − p(0)

1 q(1)
1 + q(0)

2 p(1)
2 − p(0)

2 q(1)
2 ,

I c
2 (ψ

(0), ψ(1)) :=Ω
[2]
R (Δ(0), S01Δ

(1)) = q(0)
1 q(1)

2 − p(0)
1 p(1)

2 − q(0)
2 q(1)

1 + p(0)
2 p(1)

1 ,

I s
2(ψ

(0), ψ(1)) :=Ω
[2]
I (Δ(0), S01Δ

(1)) = q(0)
1 p(1)

2 + p(0)
1 q(1)

2 − q(0)
2 p(1)

1 − p(0)
2 q(1)

1 .

(6.58)
These functions are first integrals for the diagonal prolongationsX [2]

1 , X [2]
2 , X [2]

3 of

X1, X2, X3 to M 2
Q � (R4

0)
2. The matrix of derivatives

(
∂I

∂ψ(0)

)
given in (6.54) is easily

computed, and it is found to be regular inMQ except for (0, 0, 0, 0). It is thus possible
to obtain a superposition rule by solving the system of equations I c

j (ψ(0), ψ(1)) = kj,

for j = 1, 2, 3, 4. The non-linear superposition rule in MQ is

⎛

⎜
⎜
⎜
⎝

q(0)
1

p(0)
1

q(0)
2

p(0)
2

⎞

⎟
⎟
⎟
⎠

=
(

∂I

∂ψ(0)

)−1

⎛

⎜
⎜
⎝

k1
k2
k3
k4

⎞

⎟
⎟
⎠ = 1

‖ψ(1)‖2

⎛

⎜
⎜
⎜
⎝

q(1)
1 p(1)

1 q(1)
2 p(1)

2

p(1)
1 −q(1)

1 −p(1)
2 q(1)

2

q(1)
2 p(1)

2 −q(1)
1 −p(1)

1

p(1)
2 −q(1)

2 p(1)
1 −q(1)

1

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎝

k1
k2
k3
k4

⎞

⎟
⎟
⎠ .

(6.59)
It is possible to further simplify this expression. Its non-linearity is a consequence
of the denominator. As proved several times in the preceding sections, the norm of
states is preserved under the evolution due to the unitarity of Schrödinger equations.
Thus, the constants k1, k2, k3, k4 can be replaced by new numbers that incorporate
this factor. By defining the numbers

cj = kj

(q(0)
1 )2 + (q(0)

2 )2 + (p(0)
1 )2 + (p(0)

2 )2
, j = 1, 2, 3, 4, (6.60)

expression (6.59) can be rewritten and, after some computations, the following the-
orem can be proved.

Theorem 8 There exists a superposition rule for the Lie-Kähler system XH on MQ

of the 2-level system, given on (6.57), depending on a single particular solution. The
superposition rule
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Φ : MQ × MQ → MQ

(ψ(1), c) �→ ψ(0),
(6.61)

can be given the following coordinate expression:

⎛

⎜
⎜
⎜
⎝

q(0)
1

p(0)
1

q(0)
2

p(0)
2

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

c1 c2 c3 c4
−c2 c1 c4 −c3
−c3 −c4 c1 c2
−c4 c3 −c2 c1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

q(1)
1

p(1)
1

q(1)
2

p(1)
2

⎞

⎟
⎟
⎟
⎠

. (6.62)

Consider the projection πMQ : MQ,0 → Q and the natural embedding ιQ : Q →
MQ,0 defined in Sect. 6.5. The Lie-Kähler system XH can be projected through πMQ
onto a system XH

Q on Q, as in Proposition 8. The superposition rule for XH
Q can be

obtained from of the superposition forXH . Observe thatXH is a Lie system on MQ,0

with a superposition rule Φ : MQ,0 × MQ,0 → MQ,0 and that XH
t is tangent to the

submanifold ιQ(Q) ⊂ MQ,0 for each t ∈ R. Assume also that there exists S̄ ⊂ MQ,0

such that Φ(Q × S̄) = Q. Then, the initial superposition rule can be restricted to
elements on Q giving rise to a new superposition principle.

Indeed, the superposition rule Φ is defined in Theorem 8 and evaluated on points
ψ

(1)
Q , cQ ∈ Q, i.e. ‖ψ(1)

Q ‖ = ‖cQ‖ = 1. The resulting pointΦ(ψ
(1)
Q , cQ) satisfies that

‖Φ(ψ
(1)
Q , cQ)‖ = ‖cQ‖4‖ψ(1)

Q ‖ = 1 ⇒ Φ(ψ
(1)
Q , cQ) ∈ Q.

Conversely, there always exists, for points ψ
(0)
Q ∈ Q and cQ ∈ Q, a point ψ

(1)
Q ∈ Q

such thatΦ(ψ
(1)
Q , cs) = ψ

(0)
Q . HenceXQ admits a superposition ruleΦQ : Q × Q →

Q which can be formally written as (6.62).

6.7.2 Superposition Rules for the 2-Level System onR andP

The procedure developed for the Lie-Kähler system can be repeated in order to obtain
a superposition rule on the quotient manifold R. In particular, the 2-level system is
a simple example in which the superposition rule can be written explicitly.

Recall from Lemma 1 that there exists a way to obtain coordinate systems in R.
In the case of 2-level systems, there exists a global chart with coordinates x, y, z, as
given by (6.38). A Lie system XH

R on R determined by a quantum Lie system H (t)
can be written as

XH
R,t =

3∑

j=1

Bj(t)Yj, (6.63)

where Y1, Y2, Y3 are given by (6.40). The superposition rule for XH
R depends on m

particular solutions, where m is the smallest integer such that the diagonal prolon-
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gations Y [m]
1 , Y [m]

2 , Y [m]
3 to Rm are linearly independent at a generic point. Observe

that Y1, Y2, and Y3 span a two-dimensional distribution on R. As the diagonal pro-
longations enlarge the dimensions of the distributions, it is enough to consider R2

to obtain linearly independent vectors at generic points, hence m = 2 (see [6, 20]).
The superposition rule is obtained by computing constants of motion of the diag-

onal prolongation of XH
R to R3. From the geometric properties of XH

R it is possible
to obtain constants of motion Î1, Î2, Î3 : R3 → R as

Î1(x(0), x(1), x(2)) := 2g[3]
R (Δ(0), S01Δ

(1)) = x(0)x(1) + y(0)y(1) + z(0)z(1)

‖x(0)‖ ,

Î2(x(0), x(1), x(2)) := 2g[3]
R (Δ(0), S02Δ

(1)) = x(0)x(2) + y(0)y(2) + z(0)z(2)

‖x(0)‖ ,

Î3(x(0), x(1), x(2)) := 2g[3]
R (Δ(0), Δ(0)) = ‖x(0)‖,

(6.64)

where x(j) ∈ R denotes a pointwith coordinates (x(j), y(j), z(j)) ∈ R
3,with j = 0, 1, 2,

and the norm inR has the expression ‖x‖ = √
x2 + y2 + z2.

As the considered vector fields are Killing with respect to the metric, norms are
preserved. Thus, it is possible to obtain new constants of motion I1, I2, I3 simply by
multiplying functions in (6.64) by the norm ‖x(0)‖. The matrix of derivatives of these
functions is

(
∂I

∂x(0)

)

=
⎛

⎝
x(1) y(1) z(1)

x(2) y(2) z(2)

2x(0) 2y(0) 2z(0)

⎞

⎠ , det

(
∂I

∂x(0)

)

= 2x(0) · (
x(1) × x(2)

)
, (6.65)

This shows that the matrix is regular if x(0), x(1) and x(2) are linearly independent.
In this expression and the following, it is useful to use the vector notation that
is common in R

3. Thus, x · y and x × y denote respectively the scalar and vector
product of vectors in R

3.
Consider the system of equations Ij = kj for j = 1, 2, 3, with k3 > 0. Solving

for x(0), the superposition rule for the Lie system XH
R is obtained. Observe that the

system of equations can be rewritten as a set of three vector equations in R
3:

x · x1 = k1, x · x2 = k2, x · x = k3, k1, k2, k3 ∈ R, k3 > 0. (6.66)

Since x1 and x2 are not collinear when the matrix (6.65) is regular, these vectors
together with x1 × x2 conform an orthonormal basis forR

3. From (6.66), the general
expression for x is

x =δ12x1 + δ21x2 ± √
k3[‖x1‖2‖x2‖2 − (x1 · x2)2] − (k1x1 − k2x2)2 x1 × x2

‖x1‖2‖x2‖2 − (x1 · x2)2
,
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where δlj := kl‖xj‖2 − kj(xl · xj). As the Lie systemXH
R is linear in the chosen coor-

dinate system and the Riemannian metric related to the standard scalar product onR
is invariant under the elements of VR, it follows that ‖x1‖2, ‖x2‖2 and x1 · x2 are con-
stant along particular solutions of XH

R . It is thus possible to simplify the expression,
leading to the following results.

Theorem 9 The superposition rule for the Lie system XH
R on R is a function ΦR :

R2 × A → R with A := {(k1, k2, k3) ∈ R
3 : k3 > 0}, given by

ΦR(x1, x2, (k1, k2, k3)) = δ12x1 + δ21x2 +
√

k3k12 − (k1x1 − k2x2)2 x1 × x2,
(6.67)

where k12 := ‖x1‖2‖x2‖2 − (x1 · x2)2.

To obtain the superposition rule for the system XH
P on P , consider the natural

embedding of P into R whose image is the set of elements (x, y, z) ∈ R such that
x2 + y2 + z2 = 1. Therefore, P is diffeomorphic to a sphere S2 ⊂ R � R

3
0. The

superposition rule defined for XH
R should be restricted to points in S2, i.e. with

‖x1‖ = ‖x2‖ = 1. In consequence, constants have to be constrained as |k1|, |k2| ≤ 1,
k3 = 1, and the superposition rule for P can be written in terms of its embedding
intoR as

x = δ12x1 + δ21x2 +
√

k12 − (k1x1 − k2x2)2 x1 × x2, x1, x2 ∈ P, |k1|, |k2| ≤ 1.
(6.68)

where k12 := 1 − (x1 · x2)2 and δlj := kl − kj(xl · xj), for j, l = 1, 2.

6.8 Conclusions and Outlook

Systems of differential equations appear in every description ofQuantumMechanics.
Thus, it is indubitable that any method of resolution has great importance in Physics.
Lie systems offer a new perspective in this topic. As proved along this work, the
geometric formalism offers a suitable framework for the application of this tool.
Thus, it is possible to solve the Schrödinger equation for finite-dimensional systems
by means of a superposition rule, at the level of the Hilbert space, but also at any
of the possible quantum quotient manifolds Q,R and P . Thus, Lie systems and
superposition rules are a powerful tool to describe dynamics on these manifolds.
This is very relevant, as the common algebraic description of Quantum Mechanics
usually ignores the different geometric structures.

It is remarkable that the superposition rules obtained in this work are nonlinear.
Schrödinger equation, as a linear differentiable equation on a Hilbert space, naturally
carries a linear superposition rule. The approach presented in this work, however,
yields a different result. As seen in Sect. 6.6.2, Schrödinger equations on MQ deter-
mined by traceless t-dependent Hamiltonians can be solved by means of a generally
non-linear superposition rule depending on less particular solutions than the standard
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linear superposition rule. Indeed, as the Lie systems onMQ andP are associated with
the same group, and P is no longer linear and encodes the “true” quantum degrees
of freedom of the system, it is not surprising that the associated Lie system on MQ

also captures part of these nonlinear properties. A detailed analysis of the general
properties of the superposition rules on the different quotient manifolds may also
help to obtain more information about these issues and will be covered in future
works.
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Chapter 7
Killing Vector Fields and Quantisation of
Natural Hamiltonians

José F. Cariñena, Manuel F. Rañada and Mariano Santander

Abstract The usual canonical prescription ordinarily made for the obtention of the
quantum Hamiltonian operator for a classical system leads to some ambiguities in
situations beyond the simplest ones and these ambiguities arise unavoidably when
the configuration space is not Euclidean and in systems in Euclidean space with a
position-dependent mass. A recently proposed method to circumvent this difficulty
for natural Hamiltonians will be described. The idea is not to quantise the coordinates
and their (classical) conjugatemomenta (which is where the ambiguities could arise),
but to work directly with Killing vector fields and associated Noether momenta in
order to get in some unambiguous way the corresponding Hamiltonian operator. The
example of one-dimensional position-dependent mass systems and in particular the
motion along a regular curve, both in the classical and the quantum case, is analysed
and is illustrated with the case of quantum motion on a cycloid. As another example,
the motions on constant curvature surfaces will be used to illustrate the method. In
both examples it is crucial the choice as Hilbert space the linear space of square
integrable functions, satisfying appropriate boundary conditions, with respect to the
measure that is invariant under the Killing vector field.
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7.1 Introduction

Many attempts have been done during the last recent years to clarify and to establish
a common geometric approach to both Classical and Quantum Mechanics and the
transition from Classical to Quantum Mechanics (see e.g. [1–3]). Symplectic geom-
etry has been shown to be the common framework for dealing with both types of
systems [4].

On one hand, the geometric framework for the description of classical mechanical
systems is the theoryofHamiltoniandynamical systems [5, 6].A symplectic structure
ω on a differentiable manifoldM , or more generally a Poisson structure, is the basic
concept. It is then possible to define an associated Poisson bracket endowing the set
of functions on M with a real Lie algebra structure. The dynamics is given by the
Hamiltonian vector field XH defined by the Hamiltonian H ∈ C∞(M ) by means of
i(XH )ω = dH . The system of differential equations determining the integral curves
of XH in Darboux coordinates are Hamilton equations. A particularly interesting
case is when the manifold is the cotangent bundle of the configuration space Q,
M = T ∗Q, endowed with its natural exact symplectic structure. Then, the states in
Classical Mechanics are the points of M , while the observables are the functions
F ∈ C∞(M ). The measure of an observable F in a state x ∈ M is given by the
evaluation map, the result being F(x).

On the other side, the mathematical model for Quantum Theories is different.
In Quantum Mechanics in Schrödinger picture, (pure) states are (rays rather than)
vectors ψ of a separable complex Hilbert space (H, 〈·, ·〉), while observables are the
elements ofA(H), the set of selfadjoint operators inH. The results of the measure of
the observable A in the pure stateψ may be any eigenvalue of A but with probabilities
such that the mean value is

eA(ψ) = 〈ψ,Aψ〉
〈ψ,ψ〉 . (7.1)

Finally, the dynamics is given by Schrödinger equation.
Both Classical and Quantum Mechanics can be seen as particular instances of a

more general theory. Actually, the framework unifying both approaches is the theory
of Hamiltonian dynamical systems. Then in Sect. 7.2 we recall the basic geometric
ingredients of geometric approach to Classical Mechanics and in Sect. 7.3 we study
the particular case of mechanical type systems, while in Sect. 7.4 we recall the for-
mulation of Quantum Mechanics from the perspective of Hamiltonian dynamical
systems theory. This enables us to better understand the relationship, analysed in
Sect. 7.5, between Classical and Quantum mechanics, particularly in cases where
the configuration space is not R

n. As two instances the simple examples of position-
dependent mass systems and motions on curves are presented in Sects. 7.6 and 7.7 in
the classical approach and Sects. 7.8 and 7.9 in the quantum one. The last Sections
are devoted to the important case of motions on constant curvature surfaces and a
summary of conclusions and output.
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7.2 Hamiltonian Dynamical Systems

A symplectic manifold is a pair (M ,ω) whereM is a differentiable manifold and ω
is a symplectic form, i.e. a non-degenerate closed 2-form inM , ω ∈ Z2(M ), dω = 0
[5, 6]. Non-degeneracy of ω means that for every point u ∈ M the map ω̂u : TuM →
T ∗
u M , given by 〈ω̂u(v), v′〉 = ωu(v, v′),∀v, v′ ∈ TuM , is a bijection. This implies

that the dimension of M is even, dimM = 2n.
Themap ω̂ : TM → T ∗M is a base-preservingfibredmap, and therefore it induces

a C∞(M )-linear map between the C∞(M )-modules of sections of both bundles
which,with a slight abuse of notation,we alsowrite ω̂ : X(M ) → ∧1

(M ). The vector
fields corresponding to closed 1-forms are called locally-Hamiltonian vector fields
and those corresponding to exact 1-forms are said to be Hamiltonian vector fields,
i.e. ω̂(XH(M ,ω)) = B1(M ) and ω̂(XLH(M ,ω)) = Z1(M ). So, if H ∈ C∞(M ), the
Hamiltonian vector field XH is defined as the vector field such that

i(XH )ω = dH . (7.2)

We say that (M ,ω,H ) is a Hamiltonian system when (M ,ω) is a symplectic
manifold and H ∈ C∞(M ): the dynamical vector field is XH . Cartan identity, LX =
i(X ) ◦ d + d ◦ i(X ), shows thatX ∈ XLH(M ,ω) if and only ifLXω = 0.An example
is that of the cotangent bundle πQ : T ∗Q → Q of a differentiable manifold Q. There
is a canonical 1-form θ0 on T ∗Q, that in a local chart of T ∗Q, (π−1

Q (U ),φ), where
φ = (q1, . . . , qn; p1, . . . , pn), induced by a chart (U,ϕ) of Q, ϕ = (q1, . . . , qn), has
the local expression θ0 = ∑n

i=1pi dq
i, and then the 2-form ω0 = −dθ0 with local

expression
∑n

i=1dq
i ∧ dpi is a symplectic form.

This is the local prototype of a symplectic manifold, because Darboux proved
that dω = 0 and regularity of ω imply that around each point u ∈ M there is a local
chart (U,φ) such that if φ = (q1, . . . , qn; p1, . . . , pn), then ω|U = ∑n

i=1dq
i ∧ dpi.

Such coordinates are said to be Darboux coordinates and the local expression of XH

is given by

XH =
n

∑

i=1

(

∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi

)

, (7.3)

and therefore, the local equations determining its integral curves are similar toHamil-
ton equations.

The Poisson bracket of two functions f , g ∈ C∞(M ) is defined as the function
{f , g} given by:

{f , g} = ω(Xf ,Xg) = df (Xg) = −dg(Xf ) = Xgf = −Xf g, (7.4)

which in Darboux coordinates for ω reduces to the usual expression. The map {·, ·} :
C∞(M ) × C∞(M ) → C∞(M ) is skew-symmetric and R-bilineal. Closeness of ω
implies that {·, ·} satisfies the Jacobi identity, therefore {·, ·} endows C∞(M ) with a
real Lie algebra structure. Moreover, if X ,Y are locally Hamiltonian vector fields,
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then [X ,Y ] is a Hamiltonian vector field, its Hamiltonian being ω(Y ,X ). In fact, it
is a consequence of the relation i(X )LYα − LY i(X )α = i([X ,Y ])α, which is valid
for any form α. Then,

i([X ,Y ])ω = i(X )LYω − LY i(X )ω = −LY i(X )ω = −i(Y )d [i(X )ω]
− d [i(Y )i(X )ω] = −d [ω(X ,Y )].

In particular, when X = Xf and Y = Xg in the previous relation, d{f , g} = −i([Xf ,

Xg])ω, i.e. [Xf ,Xg] = X{g,f }. This shows that the set of Hamiltonian vector fields, to
be denoted XH(M ,ω), is an ideal of the Lie algebra of locally-Hamiltonian vector
fields XLH(M ,ω) and that

0 R C∞(M )
σ

XH(M ,ω) 0,

with σ = −ω̂−1 ◦ d , is an exact sequence of Lie algebras.
An actionΦ of a Lie groupG with Lie algebra g onM defines a set of fundamental

vector fieldsXa ∈ X(M ), a ∈ g, byXa(m) = Φm∗e(−a) and themapX : g → X(M ),
a ∈ g → Xa is a Lie algebra homomorphism, i.e. [Xa,Xb] = X[a,b]. If the action of G
is strongly symplectic, X (g) ⊂ XH(M ,ω), then X is a Lie algebra homomorphism
X : g → XH(M ,ω), and then there exists a linear map f : g → C∞(M ), called co-
momentum map, making commutative the following diagram:

g

X
f

0 R C∞(M )
σ

XH(M ,ω) 0

The corresponding momentum map introduced by Souriau, is the map P : M → g∗,
defined by

〈P(m), a〉 = fa(m) , ∀m ∈ M , a ∈ g. (7.5)

It is not uniquely defined but two possible comomentum maps differ by a linear map
r : g → R, f ′

a (m) = fa(m) + r(a). In case of exact symplectic actions on exact sym-
plecticmanifolds (M ,ω = −dθ), namely, g∗θ = θ, ∀g ∈ G, the fundamental vector
fields Xa are Hamiltonian and a comomentum map can be defined as fa = −i(Xa)θ.
This is the case of an action of a Lie group G on a cotangent bundle T ∗Q lifted from
an action of G on its base manifold. Recall that if X = ∑n

i=1ξ
i(q)∂/∂qi ∈ X(Q), its

cotangent lift ˜X ∈ X(T ∗Q) (˜X projectable on X and satisfying L
˜X θ0 = 0, with θ0

the Liouville 1-form, θ =
n

∑

i=1

pi dqi), is

˜X =
n

∑

i=1

ξi
∂

∂qi
−

n
∑

i,j=1

pi
∂ξi

∂qj
∂

∂pj
. (7.6)
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As an instance, if the configuration space isQ = R
3 we can consider vector fields

generating translations on Q = R
3, and their corresponding lift in T ∗

R
3, the fun-

damental vector fields in R
3 being Xa = −∑n

i=1a
i ∂/∂qi, with canonical lifts ˜Xa a

T ∗
R

3, given by ˜Xa = −∑n
i=1a

i ∂/∂qi. The functions fa ∈ C∞(T ∗
R

3) are defined by
fa(q, p) = −[i(˜Xa)θ](q, p) = ∑n

i=1a
ipi. Using fa(q, p) = 〈P(q, p), a〉 and identify-

ing R
3, as Lie algebra of translations, with its dual, we obtain P(q, p) = p.

If the usual action of SO(3, R) on R
3 and the induced action on T ∗

R
3 are con-

sidered, the fundamental vector fields in R
3 are Xi = −∑n

j,k=1εijk q
j ∂/∂qk , with

canonical lifts

˜Xi = −
n

∑

j,k=1

εijk

(

qj
∂

∂qk
− pj

∂

∂pk

)

,

and consequently a comomentum map is fn(q, p) = ∑n
i,j,k=1ni εijk q

j pk = n ·
(q × p). Using the identification of R

3 with its dual space we see that P(q, p) =
q × p, i.e. the associated momentum is the angular momentum.

7.3 Dynamical Systems of Mechanical Type

A particularly interesting example of symplectic structure is the one defined in a
tangent bundle τQ : TQ → Q by a regular Lagrangian L ∈ C∞(TQ). Two important
geometric ingredients of the tangent bundle τQ : TQ → Q are the Liouville vector
field Δ, that is the generator of dilations along the fibres,

Δf (v) = d

dt
f (etv)|t=0, ∀v ∈ TQ, f ∈ C∞(TQ). (7.7)

and the vertical endomorphism S (see e.g. [1, 7, 8]). Given the differentiable function
L on TQ, we can construct a semibasic 1-form θL ∈ ∧1

(TQ), an exact 2-form ωL ∈
∧2

(TQ) and an energy function by

θL = S∗(dL) = dL ◦ S , ωL = −dθL , EL = Δ(L) − L , (7.8)

and when the 2-form ωL = −dθL is of maximal rank, and therefore symplectic, the
Lagrangian L is said to be regular. The Lagrangian dynamics is given by the uniquely
determined vector field ΓL solution of

i(ΓL)ωL = dEL. (7.9)

ΓL satisfies the second-order property S(ΓL) = Δ, and the curves on Q that are
a projection of the integrals curves of ΓL in TQ satisfy the second-order Euler–
Lagrange equations [7, 8].
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We are now interested in regular natural Lagrangian systems given by a non-
degenerate symmetric (0, 2)-tensorfieldg on the configuration spaceQ and a function
V on Q: L ∈ C∞(TQ) is given by [9]

Lg,V (v) = 1

2
(τ ∗

Qg)(v, v) + τ ∗V . (7.10)

Nondegeneracy of g means that the map ĝ : TQ → T ∗Q defined by 〈̂g(v), w〉 =
g(v,w), where v,w ∈ TxQ, is regular. Note that ĝ is a fibred map over the iden-
tity on Q and induces an isomorphism between the corresponding linear spaces of
sections ĝ : X(Q) → ∧1

(Q): 〈̂g(X ),Y 〉 = g(X ,Y ). If f ∈ C∞(Q) the vector field
corresponding to the exact 1-form df is denoted grad f , i.e. ĝ(grad f ) = df .

The case V = 0 in (7.10) corresponds to free motion on the (pseudo-)Riemann
manifold (Q, g), the Lagrangian then being given by the kinetic energy defined by
the metric g:

Lg,0(v) = Tg(v) = 1

2
(τ ∗

Qg)(v, v), v ∈ TQ, (7.11)

which can be rewritten as the function on TQ

Tg = 1

2
g(TτQ ◦ D,TτQ ◦ D), (7.12)

with D being any second order differential equation vector field, i.e. a vector field
on TQ, and therefore τTQ ◦ D = idTQ, such that also TτQ ◦ D = idTQ.

If (U, q1, . . . , qn) is a local chart on Q, we can consider the coordinate basis of
X(U ), usually denoted {∂/∂qj | j = 1, . . . , n}, and its dual basis for

∧1
(U ), {dqj |

j = 1, . . . , n}. A vector and a covector in a point q ∈ U are v = vj (∂/∂qj)q and
ζ = pj (dqj)q, with vj = 〈dqj, v〉 and pj = 〈ζ, ∂/∂qj〉. These areDarboux coordinates
and the local expressions for g, Tg and grad f ) are:

g =
n

∑

i,j=1

gij(q) dq
i ⊗ dqj, Tg(v) = 1

2

n
∑

i,j=1

gij(τQ(v)) vivj,

(grad f )i =
n

∑

j=1

gij
∂f

∂qj
, (7.13)

with
∑n

k=1g
ik(q) gkj(q) = δij . The dynamics is then given by a vector field ΓLg,V

solution of
i(ΓLg,V )ωLg,V = dELg,V . (7.14)

where the energyELg,V of the Lagrangian system is defined byELg,V = ΔLg,V − Lg,V .
As Δ(Tg) = 2 Tg and Δ(V ) = 0, the total energy is ELg,V = Tg + V . The Cartan 1-
form, θLg,V = dLg,V ◦ S = θTg

(see e.g. [7, 8]), gives us an exact 2-form ωLg,V =
ωTg

= −dθTg
, which is non-degenerate when g is regular and then (TQ,ωLg,V ,ELg,V )
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is a Hamiltonian dynamical system. Their coordinate expressions are:

θLg,V (q, v) =
n

∑

i,j=1

gij(q) vj dqi,

ωLg,V =
n

∑

i,j=1

gij dq
i ∧ dvj + 1

2

n
∑

i,j,k=1

(

∂gij

∂qk
vj − ∂gkj

∂qi
vj

)

dqi ∧ dqk . (7.15)

To be remarked that ωLg,V only depends on Tg and not on V , and we can use ωTg

instead of ωLg,V .
Moreover, it has been proved in [9] that if X ∈ X(Q) and X c ∈ X(TQ) is its

complete lift [7, 8],
X cTg = TLX g, (7.16)

and this property can be used to prove that the lifts of the flow of X are exact
symplectomorphisms if and only ifLX g = 0, i.e.X is a Killing vector field. Actually,
LX cθLg,V = LX cθTg

= θX c(Tg) = θTLX g
, and consequently, ifX is aKilling vector field,

LX cωLg,V = 0 and i(X c)ωL = d(i(X c)θL. Moreover, X c(Tg) = 0. In other words, the
complete lift of a Killing vector field for g is a symmetry of the free Lagrangian Tg

and provides a constant for this free motion. Recall also that Killing vector fields
close under commutators on a finite-dimensional Lie algebra.

The relation of Lagrangian and Hamiltonian formalism is established bymeans of
the Legendre transformation FL : TQ → T ∗Q, which is a diffeomorphism, because
the (0, 2)-symmetric tensor g is assumed to be non-degenerate: If v ∈ TqQ, then
α = FL(v) ∈ T ∗

q Q is such that 〈α, w〉 = g(v,w),∀w ∈ TqQ. In the abovementioned
local coordinates

pi = ∂Tg

∂vi
=

n
∑

k=1

gik(q) vk ⇐⇒ vi =
n

∑

j=1

gij(q) pj. (7.17)

The remarkable fact is that θL = FL∗θ0, and then a comparison of (7.2) with (7.8)
shows thatωTg

= FL∗ω0, and thatFL∗(ΓTg
) = XHg

when the HamiltonianHg for the
free motion is the function corresponding to the kinetic energy in terms of momenta,
i.e. Hg = Eg ◦ FL−1:

Hg = 1

2
g(̂g−1(p), ĝ−1(p)) = 1

2

n
∑

i,j=1

gij pi pj. (7.18)

If we consider the exact symplectic action of a Lie group G on the bundle T ∗Q
defined by lifting an action of G on the base Q, if Xa = ∑n

i=1 ξia(q) ∂/∂qi is the
infinitesimal generator of a ∈ g in the action on Q its lifting is given in the induced
coordinate system by the expression (7.6), and when ˜Xa is Hamiltonian, as θ0 =
∑n

i=1 pi dq
i we have that fa(q, p) = −∑n

i=1 pi ξ
i
a(q).
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In the particular case of a natural Lagrangian system as the complete lift X c ∈
X(TQ) of a Killing vector field X ∈ X(Q) is a Hamiltonian vector field, we have an
exact action of the Lie algebra of Killing vector fields on TQ and the momentum
map PL : TQ → kill∗ is defined by

〈PL(x, v), a〉 = fa(x, v) = −θTg
(X c

a ) = −
n

∑

i,j=1

gijv
jξia, (x, v) ∈ TQ, a ∈ kill.

(7.19)

On the other side, there is an alternative way to lift to T ∗Q Killing vector fields Xa

on a Riemann manifold (Q, g). Define X̄a = FL∗(X c
a ) and then these vector fields

in T ∗Q span a Lie algebra isomorphic to the Killing algebra, and are Hamiltonian
with respect to ω0, because i(X̄a)θ0 = i(FL∗(X c

a ))θ0 = (i(X c
a )θL) ◦ FL−1, and the

momentummap PH in the corresponding Hamiltonian formalism, PH : T ∗Q → kill∗
is given by

〈PH(x, p), a〉 = f̄a(x, p) = −θ0(X̄a), (x, p) ∈ T ∗Q, a ∈ kill, (7.20)

with f̄a = fa ◦ FL−1, i.e. PH = PL ◦ FL−1.

7.4 Geometric Approach to Quantum Mechanics

The Schrödinger picture of Quantum mechanics admits a geometric interpretation
similar to that of classical mechanics [1, 4]. A separable complex Hilbert space
(H, 〈·, ·〉) can be considered as a real linear space, to be then denoted HR. The
norm inH defines a norm inHR, where ‖ψ‖R = ‖ψ‖C. The linear real spaceHR is
endowed with a natural symplectic structure as follows:

ω(ψ1,ψ2) = 2 Im〈ψ1,ψ2〉. (7.21)

The Hilbert HR can be considered as a real manifold modeled by a Banach space
admitting a global chart. The tangent space TφHR at any point φ ∈ HR can be iden-
tified withHR itself; the isomorphism associates ψ ∈ HR with the vector ψ̇ ∈ TφHR

given by:

ψ̇f (φ) :=
(

d

dt
f (φ + tψ)

)

|t=0

, ∀f ∈ C∞(HR) . (7.22)

The real manifold can be endowed with a symplectic 2-form ω:

ωφ(ψ̇, ψ̇′) = 2 Im 〈ψ,ψ′〉. (7.23)
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One can see that the constant symplectic structure ω in HR, considered as a
Banachmanifold, is exact, i.e., there exists a 1-form θ ∈ ∧1

(HR) such thatω = −dθ.
For instance, the one defined by θ(ψ1)[ψ̇2] = −Im〈ψ1,ψ2〉. This shows that the
geometric framework for usual Schrödinger picture is that of symplectic mechanics,
as in the classical case.

In order to avoid topological sutilities we restrict ourselves to finite-dimensional
Hilbert spaces. A continuous vector field inHR is a continuous map X : HR → HR.
For instance for each φ ∈ H, the constant vector field Xφ defined by Xφ(ψ) = φ̇. It
is the generator of the one-parameter subgroup of transformations of HR given by
Φ(t,ψ) = ψ + t φ. As another particular example of vector field, consider the vector
field XA defined by the C-linear map A : H → H, and in particular when A is skew-
selfadjoint, as follows. With the natural identification natural of THR ≈ HR × HR,
XA is given by XA : φ �→ (φ,Aφ) ∈ HR × HR. When A = I the vector field XI is
the Liouville generator of dilations along the fibres, Δ = XI , usually denoted Δ,
given by Δ(φ) = (φ,φ). The remarkable fact, to be proved next, is that when A is
skew-selfadjoint, the vector field X−iA is Hamiltonian.

Given a selfadjoint operator A in H we can define a real function in HR by
a(φ) = 〈φ,Aφ〉, i.e. a = 〈Δ,XA〉. Then, daφ(ψ) = d

dt a(φ + tψ)t=0 = d
dt [〈φ + tψ,

A(φ + tψ)〉]|t=0 = 2Re 〈ψ,Aφ〉 = 2 Im 〈−iAφ,ψ〉 = ω(−iAφ,ψ). If we recall that
theHamiltonianvector field definedby the functiona is such that for eachψ ∈ TφH =
H, daφ(ψ) = ω(Xa(φ),ψ), we see that

Xa(φ) = −iAφ . (7.24)

Therefore if A is the Hamiltonian H of a quantum system, the Schrödinger equation
describing time-evolution plays the rôle of ‘Hamilton equations’ for the Hamiltonian
dynamical system (H,ω, h), where h(φ) = 〈φ,Hφ〉, because the integral curves of
Xh satisfy

φ̇ = Xh(φ) = −iHφ . (7.25)

The real functions a(φ) = 〈φ,Aφ〉 and b(φ) = 〈φ,Bφ〉 corresponding to two selfad-
joint operators A and B satisfy [10]

{a, b}(φ) = −i 〈φ, [A,B]φ〉 , (7.26)

because {a, b}(φ) = [ω(Xa,Xb)](φ) = ωφ(Xa(φ),Xb(φ)) = 2 Im 〈Aφ,Bφ〉, and tak-
ing into account that

2 Im 〈Aφ,Bφ〉 = −i [〈Aφ,Bφ〉 − 〈Bφ,Aφ〉] = −i [〈φ,ABφ〉 − 〈φ,BAφ〉] ,

we find the above result. So, on the integral curves of the vector field Xh defined by
a Hamiltonian H ,

ȧ(φ) = {a, h}(φ) = −i 〈φ, [A,H ]φ〉 , (7.27)
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what is usually known as Ehrenfest theorem:

d

dt
〈φ,Aφ〉 = −i 〈φ, [A,H ]φ〉 .

There is another relevant symmetric (0, 2) tensor field which is given by the real
part of the inner product. It endows HR with a Riemann structure and tnere is also
a complex structure J inHR, the R linear map corresponding to multiply by i, such
that

g(v1, v2) = −ω(Jv1, v2), ω(v1, v2) = g(Jv1, v2),

g(Jv1, Jv2) = g(v1, v2),ω(Jv1, Jv2) = ω(v1, v2).

The triplet (g, J ,ω) defines a Kähler structure in HR and the symmetry group
of the theory must be the unitary group U (H) whose elements preserve the inner
product, or in an alternative (but equivalent in the finite-dimensional case) way, by the
intersection of the orthogonal group O(2n, R) and the symplectic group Sp(2n, R).

On the other hand, as the relevant concept for measurements is the expectation
value of observables, we should consider as indistinguishable two vectors ψ1 and
ψ2 such that eA(ψ2) = eA(ψ1), for each selfadjoint operator A. This is only possible
whenψ2 is proportional toψ1. In fact it suffices to take as observableA the orthogonal
projection on ψ1. Therefore we must consider rays rather than vectors the elements
describing the quantum states and consequently the space of states is not C

n, in the
finite-dimensional case, but the projective space CP

n−1. However it is possible to
define a related Kähler structure on CP

n−1 and many similar geometric techniques
can be used in this case.

7.5 How to Find a Quantum Model for a Classical One?

In general the problem of ‘quantisation’ of a system is, given a classical Hamil-
tonian system (M ,ω,H ), to find a Hilbert space H and to choose the selfadjoint
operator ̂F corresponding to the relevant observables F . In the simplest case of an
Euclidean configuration space, the prescription is thatH is the space of square inte-
grable functions with respect to the Lebesgue measure, positions x̂i have associated
multiplication by xi operators and the momentum operators are the differential oper-
ators p̂k = −i ∂/∂xk . There will be some ordering ambiguities for other observables
because functions of xi commute with those of pk , but x̂i does not commute with p̂k ,
because we have [̂xi, p̂j] = i δik , as corresponding to {xi, pk} = δik .

Many textbooks warn that this canonical quantisation rule is only valid using
Euclidean coordinates. This is very restrictive, because, What happens in other coor-
dinates and, even worse, when there are no global preferred coordinates (for instance
Q is compact)? and What about position-dependent mass for which mass operator
does not commute with momentum operators?
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Generalising previous procedure for a more general case of a Hamiltonian dy-
namical system, Dirac assertion is that Quantisation is to be understood as a map
ζ : C∞(M ) → A(H) such that −iζ({F,G}) = [ζ(F), ζ(G)], to be compared with
(7.26).

In order to clarify the situationwe start by pointing out that in classical mechanics,
if the configuration space is an Euclidean space R

n, pi denotes many different and
inequivalent objects. So, pi denotes the i-th coordinate of a covector in a point of
the configuration space, but also pi is a real function in T ∗

R
n defined as pi(α) =

α(∂/∂xi). Finally, the real function pi is the infinitesimal generator of translations
along the i-th coordinate axis, which are canonical transformations for (T ∗

R
n,ω0).

In a more general case, Q �= T ∗
R

n, there is not a global chart, the momentum
coordinates are local and depend on the choice of base manifold coordinates, and
translations are not defined. Recall however that translations and rotations are isome-
tries of the Euclidean space.

For natural Lagrangians defined on TQ, with Q an arbitrary Riemann manifold,
we can consider the isometries of the Riemann metric, whose above mentioned lifts
are Hamiltonian vector fields and in this way we define a strongly symplectic action
on T ∗Q of the group of isometries of the Riemann manifold.

We are then able to define an associated momentum. The components Pa of this
map are the objects to be quantised instead of the pi which is not an intrinsic but a
coordinate dependent ingredient. This allows us to quantise functions of the momen-
tum map by associating the function Pa with ̂Pa = −iXa acting on an appropriate
Hilbert space. Consequently, we can quantise functions of the momentum map. We
next consider some simple models to see how this works.

7.6 Position Dependent Mass Systems

Consider a 1-dimensional systemdescribed in terms of a coordinate x by aLagrangian
[10]

L = 1

2
m(x)ẋ2 − V (x) , x ∈ R , m(x) > 0, (7.28)

leading to the nonlinear differential equationm(x) ẍ + 1
2 m

′(x) ẋ2 = 0. The associated
Hamiltonian H is

H (x, p) = 1

2

1

m(x)
p2 + V (x). (7.29)

There is an important problem with the construction of the quantum version ̂H of
H , from the classical system to the quantum one, because if the mass m is a function
of the spatial coordinate, m = m(x), then the quantum version of the mass no longer
commutes with the momentum. Different forms of presenting the kinetic term in the
Hamiltonian H , as for example
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T = 1

4

[ 1

m(x)
p2 + p2

1

m(x)

]

, T = 1

2

[ 1√
m(x)

p2
1√
m(x)

]

,

T = 1

2

[

p
1

m(x)
p
]

,

are classically equivalent but they lead to different and nonequivalent Schrödinger
equations [11–13].

This problem is important mainly because there are a certain number of important
areas, mainly related with problems on condensed-matter physics (electronic prop-
erties of semiconductors, liquid crystals, quantum dots, etc.), in which the behaviour
of the system depends of an effective mass that is position-dependent [14, 15]. Fur-
thermore, from a more conceptual viewpoint, the ordering of factors in the transition
from a commutative to a noncommutative formalism is an old question that remains
as an important open problem in the theory of quantisation.

On the other side, the free motion along a simple regular curve C looks like a
position–dependent mass system. If C is given in parametric form by x : I → R

n,
u �→ x(u), its arc-length function s(u) is an intrinsic parameter given by

ds

du
=

√

dx
du

· dx
du

= f (u) > 0, s(u) =
∫ u

√

ẋ(ζ) · ẋ(ζ) dζ. (7.30)

The geodesics of this metric coincide, up to reparametrisation, with the curves solu-
tion of the Euler–Lagrange equation of the Lagrangian L0(s, ṡ) = 1

2 m0 ṡ2 [16], that
in terms of coordinate u becomes

L0(u, vu) = 1

2
m0 f (u) v2

u, (7.31)

where m0 is a constant with mass dimension, i.e. if f ′(u) = df /du,

d

dt
(f (u)u̇) = 1

2
f ′(u) u̇2 =⇒ f (u) ü + 1

2
f ′(u) u̇2 = 0. (7.32)

7.7 Classical Motion on a Cycloid: A Case Study

As an illustrative example, consider the motion of a particle of mass m0 moving on
a gravitational field along a cycloid inverted in such a way that the origin is sited in
the lowest point [17, 18], namely:

x(ϑ) = (R(ϑ + π + sin ϑ),R (1 − cosϑ)) =
(

R(ϑ + π + sin ϑ), 2R sin2
ϑ

2

)

,

ϑ ∈ (−π,π). (7.33)
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Consequently, ẋ(ϑ) = (R(1 + cosϑ),R sin ϑ), and then,

‖ẋ‖2 = R2(1 + cos2 ϑ + 2 cosϑ + sin2 ϑ) = 2R2(1 + cosϑ) = 4R2 cos2
ϑ

2
,

from which we obtain (recall that θ ∈ (−π,π) and therefore cos(ϑ/2) > 0)

ds

dϑ
= 2R cos

ϑ

2
=⇒ s(ϑ) = 4R

[

sin
ζ

2

]ϑ

0

= 4R sin
ϑ

2
. (7.34)

The expression of the metric in these coordinates is g(ϑ) = 2R cos ϑ
2 dϑ2, i.e. the

free motion is described by the Lagrangian with a position-dependent mass given by
m(ϑ) = 2m0 R cos θ

2 : L0(ϑ, ϑ̇) = m0 R cos ϑ
2 ϑ̇2. The potential function describing

the action of the gravity in terms of the arc-length s is:

V (ϑ) = m0 g y(ϑ) = 2m0 gR sin2
ϑ

2
= 2m0 gR

s2

16R2
= 1

2
m0

g

4R
s2, (7.35)

and then the Lagrangian is given by

L(ϑ, ϑ̇) = m0 R cos
ϑ

2
ϑ̇2 − 2m0 gR sin2

ϑ

2
, (7.36)

or in terms of the canonical coordinate

L(s, ṡ) = 1

2
m0 ṡ

2 − 1

2
m0

g

4R
s2. (7.37)

Alternatively, as the tangent vector to the curve is

t(ϑ) = 1

2R cos ϑ
2

(R(1 + cosϑ),R sin ϑ) =
(

cos
ϑ

2
, sin

ϑ

2

)

,

then the tangential force is given by

Ft = F · t = −m0 g sin
ϑ

2
= −m0 g

4R
s,

while the tangential component of ẍ is s̈, and then Newton’s second law is

s̈ = −m0 g

4R
s. (7.38)

Both expressions (7.37) and (7.38) show that the motion along the inverted cycloid
in terms of the arc-length s is oscillatory with a constant period function τ = 2π

ω
=

4π
√

R
g . The initial position only fixes the amplitud of motion. This is the reason for

the tautochronous behaviour of the motion along the cycloid [17, 18].
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7.8 Quantisation of Motions on Curves

A curve is endowed with a (local) chart given by the arc-length which turns out to
be a privileged chart. We can apply the usual canonical quantisation rule using such
a chart because the expressions of the Lagrangian and Hamiltonian for free motion
are exactly the same ones as for the Euclidean case, i.e.

L0(s, ṡ) = 1

2
m0 ṡ

2, H0(s, ps) = p2s
2m0

. (7.39)

This means that a natural prescription is to replace the momentum ps by−i �∂/∂s
as an operator acting on the Hilbert space L2

0(C, ds) of square integrable functions
on the curve C vanishing on the boundary of C. As the measure ds is invariant under
length-displacements such operator is selfadjoint.

As a particular instance we study the quantum model for a particle of mass m0

living on a cycloid as configuration space, under the action of a gravitational force,
in terms of the arc-length parameter is like that of a harmonic oscillator with mass
m0 and ω2 = m0 g/(4R), for −4R ≤ s ≤ 4R.

The Hilbert space of the corresponding quantum system will be L2
0(−L,L) of

square integrable functions in the interval (−L,L),withL = 4R, satisfying the bound-
ary conditions ψ(−L) = ψ(L) = 0, and the quantum Hamiltonian operator is given
by

H = − �
2

2m0

d2

ds2
+ V (s),

where

V (s) =
{

1
2m0ω

2 s2 if |s| ≤ R
∞ if |s| ≥ 4R

.

This problem of a confined harmonic oscillator has been studied by Ghosh [19].
The Hamiltonian is parity invariant and consequently the eigenfunctions are either
even or odd functions. The time-independent Schrödinger equation is

(

− �
2

2m0

d2

ds2
+ 1

2
m0ω

2 s2
)

ψ(s) = E ψ(s),

which can be rewritten as

d2

dz2
+

(

ε − z2

4

)

ψ(z) = 0, where z =
√

2m0ω

�
and E = ε �ω.

It is common to write ε = ν + 1/2, by similarity with the usual harmonic oscillator,
i.e. E = (ν + 1/2) �ω. If we introduce now the change ψ(z) = e−z2/4φ(z), and rede-
fine the independent variable as y = 1

2 z
2, the new functionφ(y) satisfies the confluent

hypergeometric equation (see [20], p. 504):
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y
d2φ

dy2
+ (b − y)

dφ

dy
− a y = 0,

with b = 1
2 and a = − ν

2 , i.e.

y
d2φ

dy2
+

(

1

2
− y

)

dφ

dy
+ ν

2
y.

The point y = 0 is a regular singular point while y = ∞ is an irregular singularity.
A basis of the linear space of solutions for b /∈ Z is given by the confluent hyperge-
ometric function, also called Kummer function M (a, b, y) and its related function
U (a, b, y) with power expansions (see e.g. [20], p. 504):

M (a, b, y) = 1F1(a, b, y) =
∞

∑

n=0

(a)n
(b)n

yn

n!
U (a, b, y) = π

sin(πb)

(

M (a, b, y)

Γ (1 + a − b)Γ (b)
− y1−bM (1 + a − b, 2 − b, y)

Γ (a)Γ (2 − b)

)

where (an) denotes (an) = a(a + 1) · · · (a + n − 1), with (a0) = 1.
The general solution ψ(s) can be written as

ψ(s) = e−mω L2/2�

[(

A + B
√

π
Γ ((1−ν)/2)

)

M
(

− ν
2 ,

1
2 ,

m0ωs2

�

)

− 2B
√

π
Γ (−ν/2)

√

m0ω

�
sM

(

1−ν
2 , 3

2 ,
m0ωs2

�

)

]

.

The first term on the right-hand side is an even function and the second one is odd.
Therefore, the conditions on the parameter ν for ψ(s) to be an eigenfunction are

(

A + B
√

π
Γ ((1−ν)/2)

)

M
(

− ν
2 ,

1
2 ,

m0ωL2

�

)

= 0 for even functions,
√

π
Γ (−ν/2)

√

m0ω

�
M

(

1−ν
2 , 3

2 ,
m0ωL2

�

)

= 0 for odd functions.

These equations should be used to determine the energy eigenvalues.

7.9 Quantisation of Position Dependent Mass Systems

The usual approach make use of the formalism (α,β, γ): T has the following ex-
pression introduced by von Roos [11] (generalizing a previous study by BenDaniel
et al. [12]):

Tαβγ = 1

4

(

mα pmβ pmγ + mγ pmβ pmα
)

, α + β + γ = −1 . (7.40)
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We remark that in order to study a quantum system (in the Schrödinger picture)
we should first fix the Hilbert spaceH and then the (essentially) selfadjoint operators
corresponding to the relevant observables to be quantised. Therefore the quantisation
of the Hamiltonian of a system means first to define the appropriate Hilbert space of
pure states, and then construction of the quantum Hamiltonian.

In the problem of quantisation of a Hamiltonian systemwith a PDM the definition
of the measure dμ defining the Hilbert space L2(R, dμ) strongly depends on the
characteristics of the function m(x). Note that the kinetic Lagrangian L0 = T for
motion along a curve given by (7.31) admits an infinitesimal symmetry given by the
vector field

X = ∂

∂s
= 1

√

f (u)

∂

∂u
, (7.41)

which preserves the metric distance, because LX (ds) = 0.
In an analogous way, the kinetic Lagrangian Lg,0 = Tg for a position dependent

mass system possesses an exact Noether symmetry. The function Tg is not invariant
under translations but under the action of the vector field X given by [13]

X (x) = 1√
m(x)

∂

∂x
, (7.42)

(displacement δx = ε(m(x))−1/2, in the physicists language), i.e.we haveX c
(

T
) = 0,

whereX c denotes the tangent lift to the velocity phase spaceR×R (that, in differential
geometric terms, is the tangent bundle TQ of the configuration space Q = R) of the
vector field X ∈ X(R),

X c(x, v) = 1√
m(x)

( ∂

∂x
−

(1

2

m′(x)
m(x)

)

v
∂

∂v

)

. (7.43)

Recall that a Killing vector field X ∈ X(M ) in a Riemannian space (M , g), is a
symmetry of the metric g, LX g = 0 and it also preserves the volume Ωg determined
by the metric, that is,

Ωg = √|g| dx1 ∧ dx2 ∧ · · · ∧ dxn , LXΩg = 0 ,

where |g| denotes the determinant of the matrix g defining the Riemann structure.
As mentioned above in (7.16), it has been shown in [9] that if Tg(x, v) =

1
2gij(x)v

ivj, then X c(Tg) = TLX g , and consequently, the above vector field X is a
Killing vector field for g iff X c is a symmetry for the associated kinetic energy func-
tion Tg . In fact it is a Killing vector field of the one-dimensional m-dependent metric
g = m(x) dx ⊗ dx, i.e. ds2 = m(x) dx2, because the line element is invariant under
the flow of the vector field X = f (x)∂/∂x when f m′ + 2m f ′ = 0, and, therefore,
in order to the vector field X to be a Killing vector, it should be proportional to the
vector field (7.42), which represents (the infinitesimal generator of) an exact Noether
symmetry for the geodesic motion. The 1-form θTg

is θTg
= m(x)v dx, and the as-
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sociated Noether constant of the motion P for the geodesic motion, called Noether
momentum is P = i

(

X c
)

θTg
= √

m(x) v.
The Hilbert space for a quantum system with a configuration space M is the

linear space of square integrable functions on M with respect to an appropriate
measure, L2(M , dμ). It was shown in [13] that in the case of a natural system the
measure to be considered must be invariant under the the Killing vector fields of the
metric. Actually, given a transitive action Φ : G × M → M of a Lie group G on a
differentiablemanifoldM , the associated quasi-regular representation is given by the
action ofG on the set of complex functions onM , (U (g)ψ)(x) = ψ(Φ(g−1, x)). IfM
admits a G-invariant measure dμ and we restrict the action to the set L2(M , dμ), the
representation so obtained is a unitary representation [13]. The fundamental vector
field Xa, a ∈ g, which is given by

(Xψ)(x) = d

dt
ψ(Φ(exp(−ta), x))|t=0,

is a first-order differential operator that when restricted to the subspace L2(M , dμ)

is a skew-selfadjoint operator provided that the measure μ is G-invariant. For the
one-dimensional PDM system, the quantum systemmust be described by the Hilbert
space L2(R, dμx) of square integrable functions with respect to a measure invariant
under X , dμx, therefore determined by the metric.

The invariance condition under X = f (x)∂/∂x for the measure dμx = ρ(x) dx is
f ρ′ + ρf ′ = 0. Then, the only measure invariant under X for f (x) = (m(x))−1/2 is a
multiple of dμx = √

m(x) dx.
This automatically implies that the first-order linear operatorX is skew-symmetric

and that the operator̂P representing the quantum version of the Noether momentum
P must be selfadjoint, not in the standard space L2(R) ≡ L2(R, dx), but in the space
L2(R, dμx) of square integrable functions with respect the PDM measure dμx [13].

Using Legendre transformation the momentum p and velocity v are related by
p = m(x) v and the expressions of Noether momentum and Hamiltonian (kinetic
term plus a potential) in phase space are

P = 1√
m(x)

p , and H = 1

2
P2 + V (x) . (7.44)

As indicated in [13] the generator of the infinitesimal ‘translation’ symmetry’,
(1/

√
m(x)) d/dx, is skew-Hermitian in the space L2(R, dμx) and therefore the tran-

sition from the classical system to the quantum one is given by defining the operator
̂P as follows

P �→ ̂P = 1√
m(x)

(

− i �
d

dx

)

, (7.45)

so that
1

m(x)
p2 → − �

2
( 1√

m(x)

d

dx

)( 1√
m(x)

d

dx

)

,
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in such a way that the quantum Hamiltonian ̂H is represented by the following
Hermitian operator (defined on the space L2(R, dμx))

̂H = −�
2

2

( 1√
m(x)

d

dx

)( 1√
m(x)

d

dx

)

+ V (x) = −�
2

2

1

m(x)

d2

dx2

+ �
2

4

(m′(x)
m2(x)

) d

dx
+ V (x) ,

and then the Schrödinger equation ̂H Ψ = E Ψ becomes

− �
2

2

1

m(x)

d2Ψ

dx2
+ �

2

4

(m′(x)
m2(x)

) dΨ

dx
+ V (x)Ψ = E Ψ . (7.46)

7.10 Constant Curvature Surfaces

As another example of quantisation of Noether momenta we consider the case of
constant curvature surfaces. The expression of the arc-length element in geodesic
polar coordinates (ρ,φ) on a constant cuvature surfaceM 2

κ can be written as follows

ds2κ = dρ2 + 1
κ
sin2(

√
κρ) dφ2 , if κ > 0,

ds20 = dρ2 + ρ2 dφ2 , if κ = 0,
ds2κ = dρ2 − 1

κ
sinh2(

√−κρ) dφ2 , if κ < 0.
(7.47)

It is possible to deal with all of them in an unified way by introducing the following
labelled trigonometric functions

Cκ(x) =
⎧

⎨

⎩

cos
√

κ x if κ > 0,
1 if κ = 0,

cosh
√−κ x if κ < 0,

Sκ(x) =

⎧

⎪

⎨

⎪

⎩

1√
κ
sin

√
κ x if κ > 0,

x if κ = 0,
1√−κ

sinh
√−κ x if κ < 0,

(7.48)
and the κ-dependent tangent function Tκ(x) = Sκ(x)/Cκ(x). Fundamental properties
of these curvature-dependent trigonometric functions and of their derivatives are

C2
κ(x) + κS2κ(x) = 1 , Sκ(2x) = 2Sκ(x)Cκ(x) , Cκ(2x) = C2

κ(x) − κS2κ(x) ,

d

dx
Sκ(x) = Cκ(x) ,

d

dx
Cκ(x) = −κSκ(x) ,

d

dx
Tκ(x) = 1

C2
κ(x)

.

With this notation the arc-length element in all the three cases is: ds2κ = dρ2 +
S2κ(ρ) dφ2, i.e. the only nonzero components of the metric are gρρ = 1, and gφφ =
S2κ(ρ). Note that ρ denotes the distance along a geodesic on the manifold M 2

κ .
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The Lagrangian for the geodesic (free) motion on the spaces (S2
κ, E

2,H 2
κ ) is

L0κ(ρ,φ, vρ, vφ) = Tκ(ρ,φ, vρ, vφ) = 1

2

(

v2
ρ + S2κ(ρ)v2

φ

)

, (7.49)

and for a general mechanical type system (Riemannian metric minus a potential)

Lκ(ρ,φ, vρ, vφ) = 1

2

(

v2
ρ + S2κ(ρ)v2

φ

) − V (ρ,φ,κ) . (7.50)

The corresponding Legendre transformation maps the point (ρ,φ, vρ, vφ) into (ρ,φ,

pρ, pφ) with pρ = vρ, pφ = S2κ(ρ) vφ, i.e. the Hamiltonian is

H = 1

2

(

p2ρ + p2φ
S2κ(ρ)

)

+ V (ρ,φ,κ). (7.51)

Under theκ-dependent change of coordinates r = Sκ(ρ) the LagrangianL0κ becomes

L0κ(r,φ, vr, vφ) = 1

2

(

v2
r

1 − κ r2
+ r2v2

φ

)

, (7.52)

and, if we define x = r cosφ and y = r sin φ, the Lagrangian becomes

L0κ(x, y, vx, vy) = 1

2

1

1 − κ r2

[

v2
x + v2

y − κ (xvy − yvx)
2
]

, r2 = x2 + y2 .

(7.53)

The Hamiltonian expressed in terms of these coordinates can be found to be:

H0κ(x, y, p,py) = 1

2

(

p2x + p2y − κ(x py − y px)
2
)

. (7.54)

In order to look for the Killing vector fields for the metric we recall that X =
Xρ ∂/∂ρ + Xφ ∂/∂φ ∈ X(M 2

κ ) is a Killing vector field if and only if its complete
lift

Xρ
∂

∂ρ
+ Xφ

∂

∂φ
+

(

∂Xρ

∂ρ
vρ + ∂Xρ

∂φ
vφ

)

∂

∂vρ
+

(

∂Xφ

∂ρ
vρ + ∂Xφ

∂φ
vφ

)

∂

∂vφ

is a strict symmetry of L, i.e. X cL = 0. This implies that

∂Xρ

∂ρ
= 0,

∂Xρ

∂φ
+ S2κ(ρ)

∂Xφ

∂ρ
= 0, Sκ(ρ)Cκ(ρ)Xρ + S2κ(ρ)

∂Xφ

∂φ
= 0.



140 J. F. Cariñena et al.

A solution of this system is Xρ ≡ 0 and Xφ = 1, i.e. the vector field X3 = ∂/∂φ.
On the other side, as Xρ only depends on φ, a simple derivation with respect to φ in
the second equation leads to

∂2Xρ

∂φ2
+ S2κ(ρ)

∂2Xφ

∂ρ ∂φ
= 0,

while if we derive with respect to ρ in the expression obtained from the third equation

∂Xφ

∂φ
= −Cκ(ρ)

Sκ(ρ)
Xρ,

we get
∂2Xφ

∂ρ ∂φ
= 1

S2κ(ρ)
Xρ.

These relations show that Xρ is a solution of the equation

∂2Xρ

∂φ2
+ Xρ = 0,

and then the value of Xφ may be then obtained from preceding relation. In summary,
we have got the other two linearly independent Killing vector fields

X1 = cosφ
∂

∂ρ
− Cκ(ρ)

Sκ(ρ)
sin φ

∂

∂φ
, X2 = sin φ

∂

∂ρ
+ Cκ(ρ)

Sκ(ρ)
cosφ

∂

∂φ
.

Note now that the vector fields X1, X2 and X3 so defined are such that

[X1,X2] = −κX3, [X3,X1] = −X2, [X2,X3] = −X1,

and therefore they close on a real Lie algebra isomorphic either to so(3), if κ > 0,
so(2, 1), when κ < 0, or e(2) when κ = 0, i.e. it depends on the value of κ.

The momentum map for this case is given by

PH1 = −θ0(X̄1), P1(ρ,φ, pρ, pφ) = −pρ cosφ + pφ
Cκ(ρ)

Sκ(ρ)
sin φ

PH2 = −θ0(X̄2), P2(ρ,φ, pρ, pφ) = −pρ sin φ − pφ
Cκ(ρ)

Sκ(ρ)
cosφ

PH3 = −θ0(X̄3), P3(ρ,φ, pρ, pφ) = −pφ

The Hamiltonian of the corresponding free particle is

H (ρ,φ, pρ, pφ) = 1

2
p2ρ + p2φ

2S2κ(ρ)
,
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which can be expressed in terms of the components of the momentum map (we use
shorter notation P instead of PH). From

(

P1

P2

)

= −
(

cosφ − sin φ
sin φ cosφ

)

⎛

⎝

pρ

pφ
Cκ(ρ)

Sκ(ρ)

⎞

⎠ ,

we easily see that P2
1 + P2

2 = p2ρ + p2φ
C2

κ(ρ)

S2κ(ρ)
, and consequently, P2

1 + P2
2 + κP2

3 =

p2ρ + p2φ
1

S2κ(ρ)
. This shows that the Hamiltonian can be written as H = P2

1 + P2
2 +

κP2
3 . Using Cartesian coordinates, x = r cosφ and y = r sin φ, the Killing vector

fields are:

X1(λ) =
√

1 + λ r2
∂

∂x
, X2(λ) =

√

1 + λ r2
∂

∂y
, X3(λ) = x

∂

∂y
− y

∂

∂x
.

The conditions for a volume form vol = �(x, y) dx ∧ dy to be invariant under such
vector fields are:

√

1 + λ r2
∂�

∂x
dx ∧ dy + � d(

√

1 + λ r2) ∧ dy

=
(

√

1 + λ r2
∂�

∂x
+ λ x �√

1 + λ r2

)

dx ∧ dy = 0 ,

√

1 + λ r2
∂�

∂y
dx ∧ dy + � dx ∧ d(

√

1 + λ r2)

=
(

√

1 + λ r2
∂�

∂y
+ λ y ρ√

1 + λ r2

)

dx ∧ dy = 0 ,

and therefore, y times the first equation minus x times the second one gives the
invariance of the function � under rotations x∂�/∂y − y∂�/∂x = 0, which implies:
�(x, y) = f (r), with r2 = x2 + y2, and when using such expression in the previous
equations we obtain (for r �= 0):

√

1 + λ r2
1

r

df

dr
+ λ f√

1 + λ r2
= 0 ⇐⇒ df

f
= −λ

r dr

1 + λ r2
,

with general solution f proportional to f (r) = (1 + λ r2)−1/2.
Natural mechanical systems involve a potential term. The two most studied situa-

tions are the harmonic oscillator and the Kepler-Coulomb system, that are the cases
for constant curvature surface motions.

The harmonic oscillator on the unit sphere, on the Euclidean plane, or on the unit
Lobachewski plane, arise asVκ(ρ) = 1

2 α2 T2
κ(ρ), i.e.V1(ρ) = 1

2 α2 tan2 ρ, V0(ρ) =
1
2 α2ρ2, V−1(ρ) = 1

2 α2 tanh2 ρ. Now if we consider the κ-dependent change ρ →
r = Sκ(ρ) then the Lagrangian L(κ) becomes
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L(κ) = 1

2

( v2
r

1 − κ r2
+ r2v2

φ

)

− 1

2
α2

( r2

1 − κ r2

)

and, if we change to Cartesian coordinates, we arrive to

L(κ) = 1

2

( 1

1 − κ r2

)[

v2
x + v2

y − κ (xvy − yvx)
2
]

− 1

2
α2

( r2

1 − κ r2

)

,

r2 = x2 + y2 .

Similarly we can use these potential terms in the corresponding Hamiltonian.
As far as the Kepler-Coulomb system in constant curvature surface is con-

cerned one uses VK (ρ) = −k/(Tκ(ρ)). In Cartesian coordinate, using that Cκ =√
1 − κSκ(ρ),

VK (r) = −k

r

√

1 − κSκ(ρ).

7.11 Quantisation of Noether Momenta

In order to the differential operator be selfadjoint we need a Hilbert spaceL2(Q, dμ)

such that the volume form be invariant underXk , i.e. the Hilbert space of the quantisa-
tion must be L2

(

Q, (1 + λ r2)−1/2 dx ∧ dy
)

, and then the Killing vector fields X1(λ)

and X2(λ) are skewsymmetric first order differential operators. This suggests us to
quantise the momenta operators by associating the function Pk witĥPk = −iXk :

̂Px = −i �
√

1 + λ r2
∂

∂x
, ̂Py = −i �

√

1 + λ r2
∂

∂y
,

and then the quantum Hamiltonian for the free case is

̂H = − �
2

2m

(

(1 + λ r2)
∂2

∂x2
+ λ x

∂

∂x

)

− �
2

2m

(

(1 + λ r2)
∂2

∂y2
+ λ y

∂

∂y

)

+ λ
�
2

2m

(

x2
∂2

∂y2
+ y2

∂2

∂x2
− 2 x y

∂2

∂x ∂y
− x

∂

∂x
− y

∂

∂y

)

which can be written as ̂H = ̂H1 + ̂H2 − λ̂J 2, with

̂H1 = − �
2

2m

(

(1 + λ r2) ∂2

∂x2 + λ x ∂
∂x

)

,

̂H2 = − �
2

2m

(

(1 + λ r2) ∂2

∂y2 + λ y ∂
∂y

)

,

̂J 2 = − �
2

2m

(

x2 ∂2

∂y2 + y2 ∂2

∂x2 − 2 x y ∂2

∂x ∂y − x ∂
∂x − y ∂

∂y

)

,
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and each term commutes with the sum of the other two and therefore with ̂H . There-
fore we can consider three systems of compatible observables: {̂H1, ̂H2 − λ J 2},
{̂H1 − λ J 2, ̂H2}, and {̂H1 + ̂H2, J }.

The case of harmonic oscillator includes a term 1
2 α2 r2(1 − κ r2)−1 and it was

exhaustively analysed in [21–23] while the case of Kepler-Coulomb problem was
analysed in [24] and in a recent paper [25].

Finally, let us remark that the computation of the Laplace–Beltrami operator
corresponding to the given metric is very easy: the metric matrix is given by

(gij) = 1

1 + λ r2

(

1 + λ y2 −λ x y
−λ x y 1 + λ x2

)

⇐⇒ (gij) =
(

1 + λ x2 λ x y
λ x y 1 + λ y2

)

,

and then, taking into account that g = det(gij) = (1 + λ r2)−1, the Laplace–Beltrami
operator given by

Δψ = |g|−1/2 ∂

∂xi

(

|g|1/2 gij
∂ψ

∂xj

)

, (7.55)

turns out to be:

Δ = (1 + λ x2)
∂2

∂x2
+ (1 + λ y2)

∂2

∂y2
+ 2λ

(

x
∂

∂x
+ y

∂

∂y

)

+ 2λ x y
∂2

∂x∂y
.

(7.56)

7.12 Conclusions and Outlook

The existence of holonomic constraints leads to consider configuration spaces that
are not open sets ofR

n but more general differentiable manifolds, and then in order to
do differential calculus in thesemanifolds local coordinates are used tomake compu-
tations, but only intrinsic concepts, valid in any coordinate setting, are well defined.
The observables of the classical theory are differentiable real functions but are only
represented by functions of R

n once a coordinate system is fixed. This implies that
concepts such as coordinates of position or momenta are only local and therefore the
usual ‘canonical quantisation prescription’ does not work for these systems.We have
proved that in simple cases of mechanical type systems, the use of Noether momenta
corresponding to Killing symmetries can be useful to carry out the quantisation of
such functions, and some Hamiltonians. The theory has been illustrated with sim-
ple but interesting examples, as one-dimensional position dependent mass systems,
motion on curves and constant curvature surfaces.

The application of the quantisation procedure suggested in this paper to more
cases will clarify the usefulness of the method. The main restriction of the method
is that is based on the Lie algebra of Killing symmetries and this algebra may be too
small. The extension of the theory to more general Hamiltonian system where there
are magnetic terms is also to be studied and will be object of future work.
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Chapter 8
Conditions for Legitimate Memory
Kernel Master Equation

Dariusz Chruściński

Abstract We provide conditions for the memory kernel governing time non-local
quantum master equation which guarantee that the corresponding dynamical map
is completely positive and trace-preserving. This approach gives rise to the new
parametrization of dynamical maps in terms of two completely positive maps – so
called legitimate pair. Actually, this new parameterizations is a natural generalization
of Markovian semigroup. Interestingly our class contains recently studied models
like semi-Markov evolution and collision models.

8.1 Introduction

In recent years the dynamics of open quantum systems is an active field of research
[1–3]. Since any realistic physical system is never perfectly isolated from the external
world (environment) it should be treated as an open one and hence the theory of
open quantum systems plays the fundamental role for analyzing, modelling and
controlling realistic quantum systems. It should be clear that open quantum systems
are also fundamental for potential applications inmodern quantum technologies such
as quantum communication, cryptography and computation [4].

In this paper we concentrate on a proper mathematical description of quantum
evolution which is represented by a family of completely positive trace-preserving
maps Λt : T (H ) → T (H ) (t ≥ 0), where T (H ) denotes the Banach space of
trace class operators with the trace norm defined by ||A||1 = tr|A|. The natural initial
condition at t = 0 reads Λt=0 = id. One calls such family a dynamical map. The
map Λt maps an initial state represented by a density operator ρ ∈ T (H ) into the
state ρt = Λt(ρ) at the current time t > 0. A natural framework for dynamical maps
is the reduced evolution of a quantum system. Consider a composed system living
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in H ⊗ HE , where HE denotes the Hilbert space of the environment. Fixing the
initial state of the environment ρE one defines a map

Λt(ρ) := TrE(Ut ρ ⊗ ρE U
†
t ), (8.1)

where Ut = e−iHt , H stands for the Hamiltonian of the total (composed) system
(throughout the paper we keep � = 1), and TrE denotes the partial trace over en-
vironmental degrees of freedom. By construction the map Λt defined in (8.1) is
completely positive and trace-preserving (CPTP). One calls Λt the reduced evolu-
tion of the system living in H . It was proved by Nakajima and Zwanzig [5] that
reduced evolution satisfies the following equation

Λ̇t =
∫ t

0
Kt−τΛτdτ , Λt=0 = id, (8.2)

where the integral kernelKt is a highly nontrivial function of the total HamiltonianH
and the initial state of the environment. One often calls (8.2) amemory kernel master
equation and the operator Kt : T (H ) → T (H ) a memory kernel. Note, that the
rate of change of the map Λt at time t depends on its history (starting at t = 0).

In this paper we address the following problem: what are conditions for a memory
kernel Kt such that the solution Λt of (8.2) provides a legitimate dynamical map,
that is, Λt is CPTP for all t ≥ 0. In the special case when Kt = δ(t)L the memory
kernel master equation (8.2) reduces to Markovian master equation

Λ̇t = LΛt, (8.3)

withL being the celebrated GKSL generator defined as follows [6, 7]

L [ρ] = −i[H , ρ] +
∑

α

γα(VαρV †
α − 1

2
{V †

αVα, ρ}), (8.4)

where H denotes an effective Hamiltonian, Vα are noise operators, and γα ≥ 0
describe decoherence/dissipation rates. The evolutionwhich goes beyondMarkovian
master equation (8.4) is often referred as non-Markovian evolution and is extensively
analyzed in recent years (see e.g. recent reviews [8–11]).

The problem of necessary and sufficient conditions for Kt was already analyzed
bymany authors (see e.g. [12–21]). In this paper we follow recent approach proposed
in [22] and analyzed recently in [23–25]. The main idea is to represent a dynam-
ical map Λt in terms of two maps {Nt,Qt} which are completely positive but not
trace-preserving. Suitable conditions guarantees that the resulting map Λt is both
completely positive and trace-preserving. This construction enables one to find a
large class of physically legitimate memory kernels.
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8.2 Preliminaries

LetA be a unitalC∗-algebra. Recall that a linear mapΦ : A → B(H ) is positive iff
Φ(a) ≥ 0 for any a ≥ 0 (a ≥ 0 iff a = x∗x for some x ∈ A). A map Φ is k-positive
if

idk ⊗ Φ : Mk(C) ⊗ A → Mk(C) ⊗ B(H ), (8.5)

is positive (Mk(C) denotes a matrix algebra of k × k complex matrices). Finally, Φ
is completely positive (CP) if it is k-positive for all k = 1, 2, . . .. One proves [26].

Proposition 1 Φ is completely positive iff for any a1, . . . , an ∈ A and x1, . . . ,
xn ∈ H

n∑
i,j=1

〈xi|Φ(a∗
i aj)|xj〉 ≥ 0, (8.6)

for all n = 1, 2, . . ..

Due to the celebrated Stinespring representation [26, 27] any CP map Φ : A →
B(H ) may be represented as follows

Φ(a) = Vπ(a)V †, (8.7)

where V : H → K and π : A → B(K ) is a ∗-homomorphism (K is a Hilbert
space).

In this paper we consider only finite dimensional case, i.e. linear maps Φ :
L(H ) → L(H ), where L(H ) denotes linear operators acting on the finite dimen-
sional Hilbert spaceH . In this caseT (H ) = B(H ) = L(H ) (considered as vec-
tor spaces). Recall that T (H ) is a Banach space with the trace norm andB(H ) is
a C∗-algebra with the operator norm. In this case any CP map Φ : L(H ) → L(H )

is characterized by so called Kraus representation

Φ(X ) =
∑

α

KαXK
†
α, (8.8)

where Kα ∈ L(H ). The map is trace-preserving if the Kraus operators Kα satisfy∑
α K

†
αKα = I. For any linear map Φ : L(H ) → L(H ) one defines its dual Φ∗ :

L(H ) → L(H ) via

Tr(AΦ(B)) = Tr(Φ∗(A)B),

for any A,B ∈ L(H ). A map Φ is trace-preserving iff its dual is unital, that is,
Φ∗(I) = I. Note, that if Φ is represented via (8.8) then its dual is also CP and its
Kraus representation reads
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Φ∗(X ) =
∑

α

K†
αXKα. (8.9)

A linear map Φ : L(H ) → L(H ) is Hermiticity-preserving (often called Hermi-
tian) if [Φ(X )]† = Φ(X †) for all X ∈ L(H ). It is well known [26, 27] that any
positive map is necessarily Hermiticity-preserving.

8.3 Quantum Jump Representation of the Markovian
Semigroup

Let us observe that any GKSL generator (8.4) may be represented as

L = B − Z, (8.10)

where the operators B,Z : L(H ) → L(H ) are defined as follows:

B(ρ) =
∑
k

VkρV
†
k (8.11)

and
Z(ρ) = i(Cρ − ρC), (8.12)

with C ∈ L(H ) given by

C = H + i

2

∑
k

V †
k Vk . (8.13)

Evidently, B is a CP map. Moreover, its dual B∗ : L(H ) → L(H ) reads B∗(X ) =∑
k V

†
k X Vk and hence B∗(I) = ∑

k V
†
k Vk . Now, let us denote by Nt a solution of the

following equation

Ṅt = −ZNt , Nt=0 = id. (8.14)

Proposition 2 If [B,Z] = 0, then the solution to (8.3) reads

Λt = Nt

∞∑
k=0

tk

k ! B
k . (8.15)

Proof One has

Λt = etL = et(B−Z) = e−tZetB = Nt

∞∑
k=0

tk

k ! B
k , (8.16)
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where we used eX+Y = eX eY for commuting X and Y .

Note, that Nt is given by

Nt(ρ) = e−Ztρ = e−iCtρeiC
†t, (8.17)

and hence both Nt = e−Zt and etB are CP maps. It is, therefore, evident that Λt being
the composition of two CP maps is CP as well. The map Nt is CP but it is not
trace-preserving and hence the role of etB is to restore the trace preservation.

Proposition 3 The map Nt is trace non-increasing.

Proof One has for arbitrary density operator ρ

d

dt
Tr[Nt(ρ)] = Tr[(−iC + iC†)ρ] = −Tr[B∗(I)ρ] ≤ 0, (8.18)

due to B∗(I) ≥ 0.

Remark 1 A CP map Φ : L(H ) → L(H ) such that

Tr[Φ(ρ)] ≤ Trρ,

is often called a quantum operation [4].

Now, we generalize (8.15) to arbitrary B and Z , that is, we do not assume that B and
Z commute.

Theorem 1 The solution to (8.3) may be represented as follows

Λt = Nt ∗
∞∑
k=0

Q∗n
t , (8.19)

where Xt ∗ Yt := ∫ t
0 Xt−τYτdτ denotes convolution, Qt := BNt, and Q∗n

t := Qt ∗
. . . ∗ Qt (n factors).

Proof Passing to the Laplace transform (LT) of (8.3) and (8.14) one finds

Λ̃s = 1

s − B + Z
, Ñs = 1

s + Z
(8.20)

and hence

Λ̃s = Ñs
1

id − BÑs
, (8.21)

where f̃s := ∫ ∞
0 fte−tsdt. Now, introducing Q̃s := BÑs one obtains
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Λ̃s = Ñs

∞∑
k=0

Q̃n
s , (8.22)

which implies (8.19) in the time domain.

Note, that Formulae (8.20) allow also for another representation, that is, instead
of (8.21) one equivalently has

Λ̃s = 1

id − ÑsB
Ñs, (8.23)

and hence introducing Pt := NtB one finds the following representation

Λt =
( ∞∑

k=0

P∗n
t

)
∗ Nt . (8.24)

Using the definition of the convolution formula (8.24) may be rewritten as follows

Λt =
∞∑
k=1

∫ t

0
dtk

∫ tk

0
dtk−1 . . .

∫ t2

0
dt1Nt−tk BNtk−tk−1B . . .BNt2−t1 . (8.25)

Remark 2 Note, that if [B,Z] = 0, then (8.19) and (8.24) reduce to (8.15). Indeed,
one easily shows that Qt = Pt , and

Q∗n
t = (BNt)

∗n = BnN ∗n
t = tn−1

(n − 1) !B
nNt . (8.26)

Remark 3 Representations (8.19) and (8.24) are often called a quantum jump rep-
resentation of the dynamical map Λt and the CP map B is interpreted as quantum
jump.

Remark 4 Representations (8.19) and (8.24) are complementary to the standard ex-
ponential representation of Markovian semigroup

Λt = etL =
∞∑
k=0

tk

k ! L
k . (8.27)

Note, that (8.27) immediately implies that Λt is trace-preserving but complete pos-
itivity is not evident. On the other hand, both (8.19) and (8.24) imply that Λt is CP
but now the trace preservation is not evident. It shows that complete positivity and
trace preservation are complementary properties.
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8.4 A Class of Legitimate Memory Kernels

In this section we generalize the quantum jump representation of the Markovian
semigroup to the solution of the memory kernel master equation (8.2). Any memory
kernel Kt has the following general structure

Kt = Bt − Zt, (8.28)

where maps Bt,Zt : L(H ) → L(H ) are Hermitian and satisfy Tr[Bt(ρ)] = Tr
[Zt(ρ)]. This condition guarantees thatKt annihilates the trace, that is, Tr[Kt(ρ)] = 0
for any ρ, and hence Λt is trace-preserving. Actually one easily proves the following

Proposition 4 The solution to the memory kernel master equation (8.2) is trace-
preserving iff the corresponding memory kernel Kt satisfies Tr[Kt(ρ)] = 0 for any
ρ ∈ L(H ).

Remark 5 Note that defining a dual operator K∗
t : L(H ) → L(H ) the annihilation

of trace is equivalent to K∗
t (I) = 0, that is, the dual operator annihilates identity

operator I ∈ L(H ). Clearly, it implies that the dual map Λ∗
t satisfies Λ∗

t (I) = I.

Theorem 2 Let {Nt,Qt} be a pair of CP maps such that

1. Nt=0 = id,
2. Tr[Qt(ρ)] + d

dtTr[Nt(ρ)] = 0 for any ρ ∈ L(H ),
3. ||Q̃s||1 < 1.

Then the following map

Λt = Nt ∗
∞∑
n=0

Q∗n
t , (8.29)

defines a legitimate dynamical map.

Proof Condition (3) guarantees that the series

Λ̃s = Ñs

∞∑
k=0

Q̃n
s = Ñs

1

id − Q̃s
,

is convergent and hence (8.29) defines a CP map. Condition (1) implies that Λt=0 =
Nt=0 = id. Finally, condition (2) implies that the mapΛt is trace-preserving. Indeed,
passing the Laplace transform domain one finds

Tr[Q̃s(ρ)] + Tr[sÑs(ρ) − ρ] = 0. (8.30)

Now,
Λ̃s(id − Q̃s) = Ñs, (8.31)
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and hence
1

s
Tr([id − Q̃s](ρ)) = Tr[Ñs(ρ)), (8.32)

due to

Tr[Λ̃s(X )] = 1

s
Tr X . (8.33)

This proves that (8.30) is equivalent to the trace-preservation condition (8.32).

Remark 6 Note, that in the Heisenberg picture the trace-preservation condition is
replaced by Λ∗

t (I) = I and it is equivalent to the following condition for the pair
{N ∗

t ,Q∗
t }

Q∗
t (I) + Ṅ ∗

t (I) = 0, (8.34)

for all t ≥ 0.

Remark 7 Note, that
d

dt
Tr[Nt(ρ)] = −Tr[Qt(ρ)] ≤ 0, (8.35)

for any density operator ρ due to the fact that Qt is a CP map and hence Qt(ρ) ≥ 0.
Hence, the map Nt is trace non-increasing (quantum operation).

Theorem 2 may be immediately generalized as follows

Corollary 1 Let {Nt,Qt} be a pair of k-positive maps such that

1. Nt=0 = id,
2. Tr[Qt(ρ)] + d

dtTr[Nt(ρ)] = 0 for any ρ ∈ L(H ),
3. ||Q̃s||1 < 1.

Then the map Λt = Nt ∗ ∑∞
n=0 Q

∗n
t is k-positive and trace-preserving.

Actually, one may formulate the following

Corollary 2 Let {Nt,Pt} be a pair of CP maps such that

1. Nt=0 = id,
2. Tr[Pt(ρ)] + d

dtTr[Nt(ρ)] = 0 for any ρ ∈ L(H ),
3. ||̃Ps||1 < 1.

Then the following map

Λt =
∞∑
n=0

P∗n
t ∗ Nt, (8.36)

defines a legitimate dynamical map.
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In this case one has in the time domain

Λt =
∞∑
k=1

∫ t

0
dtk

∫ tk

0
dtk−1 . . .

∫ t2

0
dt1Pt−tk Ptk−tk−1 . . .Pt3−t2Nt2−t1 , (8.37)

which generalizes (8.25).
Suppose now that {Nt,Qt} satisfy assumptions of Theorem 2 (i.e. conditions (1)–

(3)). Moreover, let us assume that Ñs is invertible. Then one proves the following

Theorem 3 The operator Kt = Bt − Zt, where

B̃s = Q̃sÑ
−1
s , Zs = id − sÑs

Ñs
, (8.38)

defines a legitimate memory kernel.

Proof Indeed, one has

Λ̃s = 1

s − B̃s + Z̃s
, Ñs = 1

s + Z̃s
(8.39)

which generalizes (8.20). Hence, the representation (8.29) easily follows.

Remark 8 This shows that knowing {Nt,Qt} onemay construct a legitimate memory
kernel. Following [23] we call {Nt,Qt} a legitimate pair.

To illustrate the above construction let us consider the following

Example 1 Let

Nt =
(
1 −

∫ t

0
f (τ )dτ

)
id, (8.40)

where the function f : R+ → R satisfies:

f (t) ≥ 0 ,

∫ ∞

0
f (τ )dτ ≤ 1.

Moreover, let Qt = f (t)E , where E is an arbitrary quantum channel. Then one finds
the following formula for the memory kernel

Kt = κ(t)(E − id), (8.41)

where the function κ(t) is defined in terms of f (t) as follows

κ̃(s) = s̃f (s)

1 − f̃ (s)
. (8.42)
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In particular taking f (t) = γe−γt one finds Kt = δ(t)L , with

L = γ(E − id), (8.43)

being the GKSL generator.

8.5 Properties of Legitimate Pairs

Legitimate pairs {Nt,Qt} enjoy several interesting properties [23, 24].

Proposition 5 (Convexity) If {N (k)
t ,Q(k)

t } are legitimate pairs then a convex com-
bination Nt = ∑

k pkN
(k)
t and Qt = ∑

k pkQ
(k)
t provide a legitimate pair.

Proof It is evident that both Nt and Qt are CP and Nt=0 = id. Moreover, the trace-
preservation condition is easy to verify

Tr[Qt(ρ)] + d

dt
Tr[Nt(ρ)] =

∑
k

pk

(
Tr[Q(k)

t (ρ)] + d

dt
Tr[N (k)

t (ρ)]
)

= 0.

Finally, observe that ||Q̃s||1 ≤ ∑
k pk ||Q̃(k)

s ||1 ≤ 1 which guarantee convergence of
[id − Q̃s]−1.

Proposition 6 (Reduced pair) Suppose that {Nt,Qt} defines a legitimate pair for
the evolution inH ⊗HE. Then for arbitrary state ω inHE

Nt(ρ) := TrE(Nt[ρ⊗ ω]), Qt(ρ) := TrE(Qt[ρ⊗ ω]),

provide a legitimate pair {Nt,Qt} corresponding to the Hilbert space H .

Proof By construction Nt and Qt are CP (reductions of CP maps Nt and Qt), and
Nt=0 = id. Direct calculation easily verifies trace-preservation condition

Tr[Qt(ρ)] + d

dt
Tr[Nt(ρ)] = Tr[Qt(ρ ⊗ ω)] + d

dt
Tr[Nt(ρ ⊗ ω)] = 0,

which ends the proof.

Remark 9 This construction provides a straightforward generalization of

Λt(ρ) = TrE(e−iHtρ⊗ ωeiHt), (8.44)

corresponding to B = 0. Note that Λt is a dynamical map whereas Nt is CP but it is
not trace preserving. It should be stressed that the map Λt generated via the reduced
pair {Nt,Qt} is not a reduction of the map generated by {Nt,Qt}.
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Proposition 7 (Gauge transformations) If {Nt,Qt} is a legitimate pair, Ft is a
dynamical map and Gt is a arbitrary CPTP map, then

N ′
t := FtNt , Q′

t := GtQt, (8.45)

provide a legitimate pair as well.

Proof It is evident thatN ′
t andQ

′
t are CPmaps andN ′

t=0 = id. The trace-preservation
condition gives

Tr[Q′
t(ρ)] + d

dt
Tr[N ′

t (ρ)] = Tr[Qt(ρ)] + Tr[[ĠtNt + Gt Ṅt](ρ)]
= Tr[Qt(ρ)] + Tr[Ṅt(ρ)] = 0,

sinceFt and Gt are trace-preserving and Ġt annihilates the trace.

Example 2 Taking Nt and Qt as in Example 1 one obtains a new pair

N ′
t =

(
1 −

∫ t

0
f (τ )dτ

)
Ft , Q′

t = f (t)Gt . (8.46)

In particular taking Ft = Gt = etL , and f (t) = γe−γt one finds

Ñ ′
s = 1

s + γ − L
, Q̃′

s = γ

s + γ − L
,

and hence the memory kernel reads

K̃ ′
s = Q̃′

sÑ
′−1
s − (id − sÑ ′

s)Ñ
′−1
s = L ,

that is, the new kernel is purely local. This way we gauged away all memory effects
already present in the original evolution governed by Kt .

Example 3 Consider a GKSL generator L = B − Z acting on L(H ⊗HE). Due to
Proposition 6 for arbitrary state ω inHE

N (t)[ρ] = TrE(e−Zt[ρ⊗ ω]), (8.47)

and
Q(t)[ρ] = TrE(Be−Zt[ρ⊗ ω]), (8.48)

provide a legitimate pair in L(H ). Clearly, in general {N (t),Q(t)} no longer defines
a semigroup (it defines a semigroup only if Z = Z ⊗ idE and B = B ⊗ idE).
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8.6 Non-homogeneous Memory Kernel Master Equation

Let us observe that any legitimate pair {Nt,Qt} gives rise to the following non-
homogeneous memory kernel master equation

Λ̇t =
∫ t

0
Knew
t−τ Λτdτ + Ṅt , (8.49)

where the new kernel Knew
t is defined in terms of LT as follows [23]

K̃new
s = sÑsQ̃sÑ

−1
s , (8.50)

that is, K̃new
s and sQ̃s are related by a similarity transformation.

Remark 10 In particular if [Ñs, Q̃s] = 0, then

K̃new
s = sQ̃s, (8.51)

or equivalently in the time domain

Knew
t = Q̇t + δ(t)Q0. (8.52)

In this case (8.49) takes the following form

Λ̇t = Q0Λt +
∫ t

0
Q̇t−τΛτdτ + Ṅt . (8.53)

Interestingly, this evolution is governed by three characteristic terms: local generator
Q0, time non-local kernel Q̇t , and non-homogeneous term Ṅt . Integrating by parts in
the second term one obtains

Λ̇t =
∫ t

0
Qt−τ Λ̇τdτ + Ṅt . (8.54)

Example 4 Let us consider {Nt,Qt} as in Example 1. In this case [Nt,Qt] = 0, and
hence (8.53) reduces to the following one

Λ̇t = f (0)EΛt +
∫ t

0
ḟ (t − τ )EΛτdτ − f (t)id, (8.55)

or equivalently

Λ̇t =
∫ t

0
f (t − τ )E Λ̇τdτ − f (t)id, (8.56)

Taking f (t) = Γ e−Γ t , and the gauge Ft = Gt , one obtains
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Λ̇t = Γ

∫ t

0
e−Γ (t−τ )EFtΛ̇τdτ + e−Γ tḞt, (8.57)

which recovers the memory kernel master equation derived in [28].

Example 5 Let us derive the non-homogeneous master equation for the Markovian
semigroup. In this case one has (cf. Sect. 8.3)

Nt = e−Zt , Qt = Be−Zt .

One finds therefore the following equation for the dynamical map Λt

Λ̇t = BΛt − Z
∫ t

0
e−ZτBΛt−τdτ − Ze−Zt . (8.58)

Now, for the Markovian semigroup one has Λt = et(BZ ) and hence inserting into
(8.58) leads to the following identity

(B − Z)e(B−Z)t = Be(B−Z)t − Z
∫ t

0
e−ZτBe(B−Z)(t−τ )dτ − Ze−Zt, (8.59)

or after a simple algebra

ZeZte(B−Z)t = Z
∫ t

0
eZτBe(B−Z)τdτ + Z, (8.60)

which is trivially satisfied if [B,Z] = 0. However, in the non-commutative case it is
non-trivial and may be proved via the Baker-Campbell-Hausdorff formula.

8.7 Semi-Markov Evolution

In this section we analyze special class of legitimate pairs giving rise to so called
quantum semi-Markov evolution [15, 18]. Let Qt be a family of CP maps such that

∫ ∞

0
Q∗

t (I)dt ≤ I, (8.61)

where Q∗
t denotes the dual map. One calls such map a quantum semi-Markov map

[24]. Now, let us define so called quantum waiting time operator ft := Q∗
t (I) and a

quantum survival operator

gt := I −
∫ t

0
fτdτ . (8.62)
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Note, that if Qt is quantum semi-Markov, then gt ≥ 0. Finally, one defines Nt via

Nt(ρ) := √
gt ρ

√
gt . (8.63)

Proposition 8 {Nt,Qt} defines a legitimate pair.
Proof Clearly both maps are CP. Moreover Nt=0 = id due to gt=0 = I. The trace-
preservation condition (8.34) reads

Q∗
t (I) + ġt = 0,

due to ġt = −ft = −Q∗
t (I).

Let |k〉 (k = 1, . . . , d) denotes the orthonormal basis inH and let eij := |i〉〈j| ∈
L(H ). Define a semi-Markov map Qt by

Qt(ρ) =
d∑

i,j=1

qij(t)eijρeji, (8.64)

where qij(t) ≥ 0. One finds

ft = Q∗
t (I) =

d∑
i,j=1

qij(t)ejieij =
d∑

i,j=1

qij(t)ejj =:
d∑
j=1

fj(t)ejj, (8.65)

with fj(t) = ∑d
i=1 qij(t). Clearly, one finds for gt

gt =
d∑
j=1

gj(t)ejj, (8.66)

with

gt(t) = 1 −
∫ t

0
fj(τ )dτ . (8.67)

Hence, the map Nt has the following Kraus representation

Nt(ρ) = √
gtρ

√
gt =

d∑
i,j=1

√
gi(t)gj(t) eii ρ ejj. (8.68)

This map represents the decoherence process with respect to the basis |k〉. Note,
however, that it is not trace-preserving. Indeed, Tr[Nt(ρ)] = ∑

i gi(t)ρii ≤ Trρ due
to gi(t) ≤ 1. The role of the additional map Qt is to restore the trace-preservation. In
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this case thewhole evolution is controlled by a singlemapQt which isCP and satisfies
additional constraint (8.61). Interestingly, this example is a mixture of classical map
qij(t) and the quantum map Nt representing trace non-increasing decoherence.

8.8 Conclusions

In this paper we provided a parametrization quantum dynamical maps in terms of
pairs of CP maps {Nt,Qt} (or equivalently {Nt,Pt}). This construction provides a
natural generalization of the parametrization for the Markovian semigroup, where
the generatorL = B − Z is related to the pair {Nt,Qt} via Nt = e−Zt andQt = BNt .
This approach is complementary to the time-local formulation base on the following
master equation

Λ̇t = LtΛt , Λt=0 = id, (8.69)

where Lt denotes time-dependent local generator. In this case the solution is given
by the Dyson series

Λt = T exp

(∫ t

0
Lτdτ

)

= id +
∞∑
k=1

∫ t

0
dtk

∫ tk

0
dtk−1 . . .

∫ t2

0
dt1LtkLtk−1 . . .Lt1 , (8.70)

whereT stands for time ordering operator. This series might be considered as com-
plementary to (8.37). Both series control different properties: (8.37) controls com-
plete positivity and (8.70) controls trace-preservation.

Finally, it should be stressed that our approach provides only a set of sufficient con-
ditions which are in general not necessary. Finding these deserves further analysis.
Such analysis is also needed in the case of time-local master equation (8.69) where
only sufficient conditions for time local generator are known. It should be stressed that
we considered only finite dimensional case. However, many results may be immedi-
ately generalized for infinite dimensions as well. It was already proved by Lindblad
[7] that GKSL generator (8.4) works in the infinite dimensional case provided L
is bounded. Recently, an unbounded generators for Markovian semi-groups were
considered in [29]. One may also provide similar analysis for completely bounded
[26] maps Nt and Qt .

Acknowledgements This paper was partially supported by the National Science Center project
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Chapter 9
From Classical Trajectories to Quantum
Commutation Relations

F. M. Ciaglia, G. Marmo and L. Schiavone

Abstract In describing a dynamical system, the greatest part of the work for a
theoretician is to translate experimental data into differential equations. It is desir-
able for such differential equations to admit a Lagrangian and/or an Hamiltonian
description because of the Noether theorem and because they are the starting point
for the quantization. As a matter of fact many ambiguities arise in each step of such
a reconstruction which must be solved by the ingenuity of the theoretician. In the
present work we describe geometric structures emerging in Lagrangian, Hamiltonian
and Quantum description of a dynamical system underlining how many of them are
not really fixed only by the trajectories observed by the experimentalist.

9.1 Introduction

When dealing with the description of a dynamical system in terms of differential
equations, ifwewant to avoid the dry kind of approach: “LetM be a smoothmanifold,
and � a vector field on M ”, we should consider where this manifold comes from,
how a vector field happens to exist on it and what is the relation of this vector field
with the observation of an experimentalist. This analysis is an essential part of the
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work of a theoretician. Interestingly enough, this point of view is already contained
in one of Aristotele’s observations [1]:

Now, the path of investigation must lie from what is more intimately cognizable and clear
to us, to what is clearer and more intimately cognizable in its own nature [...]
So we must advance from the concrete data when we have analysed them [...]
Sowemust advance from the concretewhole to the several constituentswhich it embraces [...]

Accordingly, we want to start with “what is more intimately cognizable and clear to
us” in order to describe the dynamics of a generic dynamical system, that is, we want
to start from a set of trajectories on some configuration space Q extracted from ex-
perimental data. We avoid here an epistemological digression about the construction
of the configuration space from experimental data, and we refer to [2] for a detailed
discussion.

In Sect. 9.2 we recall the main points of the construction of differential equations
(in general implicit) from the set of experimental trajectories. In doing so, we shall
see how the carrier manifold for the differential equation is something we should
actively build out of experimental data, and not something that is there from the begin-
ning. Then, assuming the resulting differential equation to be an explicit differential
equation,1 we pass to analyse the process of “tensorialization” of the Lagrangian and
Hamiltonian description of the dynamics. Specifically, in Sect. 9.3 we consider the
Lagrangian picture of classical mechanics, while in Sect. 9.4 we deal with the Hamil-
tonian picture. The tensorial characterization of the Lagrangian and Hamitlonian
pictures allows us to clearly recognize the possibility of alternative Lagrangian and
Hamiltonian descriptions for the samedynamical systems. Furthermore,we comment
on the possibility of exploiting alternative tangent bundle structures on the same car-
rier manifold in order to obtain a Lagrangian description for dynamical systems that
are not of second order with respect to a given tangent bundle structure. This could be
particularly relevant in all of those situations in which it is necessary to reparametrize
a given dynamics in order to obtain a complete vector field (e.g., the Kepler prob-
lem, see [3, 4]). In Sect. 9.5, we recall how the existence of alternative, nonlinearly
related symplectic vector space structures on the same set allows for the definition of
alternative and nonlinearly related quantum descriptions in terms of Weyl systems
(an important example is provided by the so called f-oscillators, [5]).

9.2 Differential Equations from Experimental Data

We model the set S of observed trajectories as the set of curves over some configu-
ration space subject to suitable regularity conditions:

S = {γ | I → Q : t �→ γ (t)} . (9.1)

1Some considerations on what happens when we obtain implicit differential equations are made in
Appendix.
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In general, curves in S intersect each others and we need to discriminate between
intersecting curves if we want them to arise as solutions of first order differential
equations. Essentially, we want to “lift” our curves fromQ to a larger manifold where
curves do not intersect anymore and may, possibly, be described as solutions of first
order differential equations.

According to the results in [2], if we restrict our attention to Newtonian-like
systems, that is, dynamical systems described by second order differential equations,
on the configuration space, it is in general sufficient to lift the trajectories of the system
from Q to the tangent bundle TQ to separate them. If this is not the case, that is, if
trajectories lifted to the tangent bundle still intersect each other, successive lifting
are not allowed because they will produce equations of motions of order greater than
2. Thus, in such a situation, one has to look for other ways to separate trajectories
[2, 6]. More likely, trajectories furnished by the experimentalist belong to different
dynamical systems, for instance they could be particles with different mass, different
charge, different spin or some other characteristic property.

Let us limit our attention to the situation where the set

tS = {tγ | I → TQ : t �→ (γ (t), γ̇ (t))} (9.2)

is a set of non-intersecting trajectories on TQ. It is worth noting that, in general, the
set tSmay not coincide with the whole TQ. In any case, it will be required to define
a submanifold instead of just a subset of TQ, if it does not coincide with the whole
TQ,

tS = M ⊂ TQ . (9.3)

In order to find the differential equation, it is possible to construct the set

ttS = {ttγ | I → TTQ : t �→ (γ (t), γ̇ (t), γ̇ (t), γ̈ (t))} . (9.4)

We require again that we are dealing with a submanifold of TTQ

ttS = � ⊂ TTQ , (9.5)

and, when some regularity conditions are satisfied ([2], Chap. 6), it may happen that
� is the image of a second order vector field

� | TQ → � (TTQ) . (9.6)

This means that γ̇ (t) and γ̈ (t) in (9.4) are given by the components of a second order
vector field over TQ. In this case it is possible to write the equations of motion for
the dynamical system under investigation in the explicit form:

γ̇ (t) = v γ̈ (t) = f (q, v) , (9.7)

where (q, v) are coordinates on TQ.
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Remark 1 There are situations in which the submanifold� ⊂ TTQ can not be writ-
ten as the image of a second order vector field over TQ. Then, � ⊂ TTQ may be
interpreted as an implicit differential equation over TQ ([7], Sect. 5). It may also
happen that by the lifting procedure we do not cover all of TQ but only a subset, in
this case we would say that our system is subject to some non-holonomic constraints.
This would be the case, for instance, when we describe a relativistic particle with Q
being the space-time.

In physics it is found convenient to ask for a description of the equations of motion
in terms of some suitable function, both to be able to exploit Noether’s theorem and
to deal with quantization procedures. In this regard, two possibilities have proven
to be quite satisfactory: the Lagrangian and the Hamiltonian pictures. In the
former case, the function, also called the Lagrangian function, is a real-valued
function L | TQ → R on the tangent bundle of the configuration space Q giving
rise to the following differential equations on TQ, the so called Euler- Lagrange

equations:
d

dt

∂L

∂vj
− ∂L

∂qj
= 0

d

dt
qj − vj = 0 .

(9.8)

They are clearly implicit differential equations. Indeed, by expanding the time deriva-
tives, one has:

∂2L

∂vi∂vj
v̇j + ∂2L

∂vi∂qj
vj − ∂L

∂qi
= 0 (9.9)

with vi = dqi

dt , where it is clear that the equation may be reduced to an explicit one

only if the matrix ∂2L
∂vi∂vj is invertible, that is, if the Lagrangian is non-degenerate.

From the geometrical point of view, the specific form of these equations requires the
carrier space to possess a tangent bundle structure.2

In the latter case the function is a real-valued function on the cotangent bundle
H | T∗Q → R, also called theHamiltonian function, giving rise toHamilton
equations:

d

dt
qi = −∂H

∂pi

d

dt
pi = ∂H

∂qi
. (9.10)

Quite clearly, these equations are always explicit differential equations, indepen-
dently of the form and properties of H . As we will explain later in this section,
in this Hamiltonian case, the fundamental geometrical structure is the so called Li-

ouville one form, θ , which defines the partial linear structure of the cotangent
bundle in a canonical way [11] and whose differential is the canonical symplectic

2Other approaches, that are useful for dealing with explicitly time-dependent systems, take as
fundamental structure the first order jet bundle of the Cartesian product R × Q, J1 (R × Q), and as
Lagrangian, an horizontal density over such a fiber bundle ([8], Sect. 4.1, [9], Chaps. 3 and 4, and
[10], Chap.3, p. 97).
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form ω on the cotangent bundle T∗Q, that is, a closed, non-degenerate 2-form on
T∗Q. In a coordinates system (q, p) adapted to the cotangent bundle structure of
T∗Q, the Liouville one form reads θ = pjdqj, while the symplectic form reads
ω = dpj ∧ dqj and the partial linear structure is � = pi

∂
∂pi

.

Remark 2 The problem of finding a Lagrangian or an Hamiltonian and a Poisson
structure such that the equations of motion found in the previous section by means
of experimental data coincide with Euler-Lagrange or Hamilton equations is a non-
trivial problem in Mathematics. It is, in fact, probably one of the most important
problems in the Calculus of Variations and it is the so called Inverse problem of

the Calculus of Variations.
Regarding the Lagrangian formalism, in the “lucky case” where equations of

motion are explicit differential equations, a (non-unique) solution is known, provided
that some conditions, the so-called Helmholtz conditions, are satisfied.3 For fair
implicit differential equations, the inverse problem is in general not widely studied
(see however [16, 17]), andwe refer toAppendix for a discussion about the difficulties
in formulating the problem.

In the Hamiltonian case, the problem is slightly more complicated because we
should be looking for both a Hamiltonian and a Poisson structure at the same time.
The existence of a possible Poisson description, according to Dirac, seems to be a
necessary condition to carry on a quantization procedure [18].

9.3 Dynamical Systems and Geometrical Structures:
Lagrangian Picture

A great boost in our understanding of the Lagrangian and Hamiltonian formalisms
mentioned above camewhen a tensorial characterization of the fundamental geomet-
ric structures underlying these descriptions of the dynamics was achieved. Regarding
the Lagrangian formulation of dynamics, a necessary step in the “tensorialization”
process is a tensorial characterization of the structure of tangent bundle and sec-
ond order (Newtonian-like) vector fields (as given for instance in [19]). Essentially,
given a smooth manifold of dimension 2n, sayM, a tangent bundle structure forM
is encoded in the following two objects:

• a (1, 1) tensor field, say S, such that S2 = 0, Ker S = Im S and NS = 0, where
NS denotes the Nijenhuis tensor associated with S ([13], Sect. 2.4);

• a partial linear structure � (see Definition 3.15 at p. 158 in [11]), whose critical
points constitute a smooth submanifold ofM of dimension n, and such thatL� S =
−S and S(�) = 0.

We do not give a proof of the theorem for which we refer to [19]. However, the
conditionKer S = Im S tells us thatM is even-dimensional and then the whole proof

3See [12] for an analytic introduction, [13, 14] for a geometrical approach on the tangent bundle
and [8, 9, 15] for an approach on jet bundles and for an introduction to Variational Sequences.
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is based on the construction of an atlas over M in which S and � take, in a local
chart of such an atlas, their “canonical” form:

S = ∂

∂vi
⊗ dqi � = vi

∂

∂vi
, (9.11)

where the qj’s may be then interpreted as configuration-like coordinates, while the
vj may be interpreted as velocity-like coordinates, and we have M ∼= TQ. Then, it
is clear that the only diffeomorphisms preserving the given tangent bundle structure
encoded in � and S are all those diffeomorphisms 	 : M → M that are the tangent
lift Tφ of some diffeomorphism φ : Q → Q. Locally, these diffeomorphisms may
always be written as:

q′i = f i(q) v′i = vj
∂f i

∂qj
. (9.12)

In this sense, S and� represent the tangent bundle structure and identify the subgroup
of diffeomorphisms which preserve them both.

In this framework, a second order (Newtonian-like) vector field � on TQ ∼= M is
defined as a vector field the integral curves (on TQ ∼= M) of which are tangent lifts
of curves on the base manifold Q. It is easy to see that, in every coordinate system
(q, v) which is adapted to the tangent bundle structure on TQ ∼= M encoded in S
and �, the second order (Newtonian-like) vector field � can be written as:

� = vj
∂

∂qj
+ �j(q, v)

∂

∂vj
. (9.13)

From this it is possible to give a purely tensorial description of a second order vector
field in terms of S and � as follows

S(�) = � . (9.14)

This tensorial characterization of second order (Newtonian-like) vector fields allows
us to immediately see what happens to the second order vector field � when we
perform arbitrary transformations on the manifold M ∼= TQ. Consequently, let us
consider a diffeomorphism φ : M → M which is not necessarily adapted to the
tangent bundle structure onM encoded in S and �. Since φ is a diffeomorphism, it
is possible to transform � by means of φ to obtain another vector field onM. Then,
we may look at what happens to (9.14) under the action of φ obtaining:

φ∗ [S(�)] = φ∗� → (
φ∗S

)
(φ∗�) = φ∗� . (9.15)

This equation is interpreted as the SODE condition for the “transformed” field, φ∗�
with respect to the “transformed” tangent bundle structure given by φ∗S and φ∗�.
From this, it follows that an arbitrary transformation onMwill transform our vector
field into a vector field which is still a second order vector field, but, in general, with
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respect to another alternative tangent bundle structure on M. In particular, when φ

is a symmetry for �, that is, if φ∗� = �, we obtain:

(
φ∗S

)
� = φ∗�, (9.16)

which means that the vector field � itself is a second order vector field also for the
alternative tangent bundle structure given by φ∗S and φ∗�.

The notion of second-order vector field, together with the tensorial characteriza-
tion of the tangent bundle structure encoded in S and �, allows to give a tensorial
formulation of the Euler-Lagrange equations. Given the Lagrangian functionL , we
define the 1-form:

θL := dS L , (9.17)

where dS is defined as dS := S ◦ d according to formula (2.4.12) at p. 170 [13], and
its action on functions reads S ◦ d. The one-form θL is a semi-basic form on TQ,
and its coordinate expression in a coordinates system (q, v) adapted to the tangent
bundle structure of TQ reads:

θL = ∂L

∂vi
dqi . (9.18)

Now, we may introduce the so-called Lagrangian 2-form:

ωL := −d θL . (9.19)

This is a closed 2-form on TQ, and we may consider the equation:

i� ωL = dEL , (9.20)

where � is a vector field on TQ and EL := �(L ) − L . In general, this equation
does not admit of a unique solution. Indeed, if the two-form is degenerate it may
happen that there is no solution and when a solution exists it need not be unique.
However, if ωL is non-degenerate,4 then it is a symplectic form and (9.20) admits a
unique solution � which is a second-order vector field on TQ. Using the Cartan’s
identity (i.e., LX = iX d + d iX ) it is possible to show that (9.20) is equivalent to

L� θL − dL = 0 . (9.21)

Furthermore, it is easy to see that, in a coordinates system (q, v) adapted to the
tangent bundle structure of TQ, (9.21) acquires the usual Euler-Lagrange form:

d

dt

∂L

∂vj
− ∂L

∂qj
= 0 . (9.22)

4Nondegenerancy of ωL is equivalent to det( ∂2L
∂vj∂vk

) �= 0 ([13], Sect. 3). When this is not the case,
a careful analysis of the given situation is needed since, in general, we are in the presence of the
description of a physical system in terms of fair implicit differential equations.
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Now that we have a tensorial formulation of Euler-Lagrange equations, we may
consider some diffeomorphism φ onM ∼= TQ and look at the “transformation prop-
erties” of Euler-Lagrange equations. We will do it by looking at how the differential
1-form on the left hand side of (9.21) changes by taking its pull-back trough the dif-
feomorphism φ. By using Theorem 7.4.4 at p. 413 and Proposition 7.4.10 at p. 416
in [20], and by using the Cartan’s identity for the Lie derivative, we have

Lφ∗� φ∗θL − d φ∗L = 0 (9.23)

Again, if φ is the tangent lift of a diffeomorphism on Q (i.e., φ = Tϕ for some
ϕ : Q → Q), and when it is a symmetry for � (i.e., φ∗� = �), we obtain different
Lagrangian descriptions for the same dynamical system. For a complete geometrical
characterization of alternative Lagrangian descriptions we refer to [13].

Remark 3 Until now, we have always started with a vector field which is of second
order with respect to some tangent bundle structure on M. However, we may think
of starting with a generic vector field which is not a second order one and ask if
and how it is possible to “transform” it into a second order one with respect to
some yet undetermined tangent bundle structure on M (if it exists). In particular,
given a vector field � over the tangent bundle of some configuration space Q, say
M ∼= TQ, characterized by S and�, we may ask if it is possible to endowMwith an
alternative tangent bundle structure which makes the given vector field into a second
order one. We will now write down some simple examples of such a situation in a
coordinate-dependent fashion, postponing a tensorial analysis to a future work.

Example Let us consider a configuration spaceQ ∼= R. Then TQ ∼= TR ∼= R
2. Con-

sider a coordinatization (q, v) over TQ and the vector field:

� = f (v)v
∂

∂q
(9.24)

where f is a nowhere vanishing function and d(f (v) v) �= 0. This vector field would
describe a reparametrized free particle with a reparametrization-function which is a
constant of the motion. We may need a more general reparametrization if we want to
turn a vector field into a complete one (this would be the case for the Kepler problem.
See [3]). Now, consider a diffeomorphism:

φ | TQ → TQ : (q, v) �→ (φ1(q, v) =: y, φ2(q, v) =: w) (9.25)

then we can transform � through φ−1:

(
φ−1

)
∗ � = f (v)v

(
∂y

∂q

∂

∂y
+ ∂w

∂q

∂

∂w

)
(9.26)
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Looking at the previous expression, in order to obtain a second order vector field,
we need a diffeomorphism such that:

f (v)v
∂y

∂q
= w (9.27)

It is easy to see that if we consider the following diffeomorphism:

y = q

f (v)
w = v (9.28)

then:
(
φ−1

)
∗ � = w

∂

∂y
(9.29)

which is a second order vector field with respect to the tangent bundle structure
characterized by:

S ′ = dy ⊗ ∂

∂w
�′ = w

∂

∂w
(9.30)

Example Now, let us consider the following vector field on TR:

� = ω v
∂

∂q
− ω q

∂

∂v
(9.31)

where ω is a constant of the motion for �. This is again a reparametrized vector field
with a reparametrization function which is a constant of the motion. Consider, again
a diffeomorphism:

φ | TQ → TQ : (q, v) �→ (φ1(q, v) =: y, φ2(q, v) =: w) (9.32)

and let us evaluate the following vector field:

(
φ−1

)
∗ � = ω

(
v
∂y

∂q
− q

∂y

∂v

)
∂

∂y
+ ω

(
v
∂w

∂q
− x

∂w

∂v

)
∂

∂w
(9.33)

then it is a matter of direct computation to show that, if one takes:

y = q

ω2
w = v

ω
(9.34)

then:
(
φ−1

)
∗ � = w

∂

∂y
− ω2 y

∂

∂w
(9.35)
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which is a second order vector field with respect to the tangent bundle structure given
by:

S ′ = dy ⊗ ∂

∂w
�′ = w

∂

∂w
(9.36)

and which represent an harmonic oscillator of frequency ω, where the frequency is
a constant of the motion, it is an example of f- oscillator (see [5]).

Example Now, let us consider the following vector field on TR:

� = q
∂

∂q
(9.37)

By means of a diffeomorphism, as in the previous two examples, one has:

(
φ−1

)
∗ � = q

(
∂y

∂q

∂

∂y
+ ∂w

∂q

∂

∂w

)
(9.38)

Here, it is easy to show that if one takes the following diffeomorphism:

y = q + f (v) w = q (9.39)

with df ∧ dq �= 0, then:

(
φ−1)

∗ � = w
∂

∂y
+ w

∂

∂w
(9.40)

which is, again, a second order vector field with respect to the alternative tangent
bundle structure characterized by:

S ′ = dy ⊗ ∂

∂w
�′ = w

∂

∂w
(9.41)

Remark 4 Postponing to a future work a carefully analysis of such a question, we
would stress the fact that we have considered a generic vector field (not of second
order with respect to S and �) and we have searched for a diffeomorphism which
transforms such a vector field into a second order one with respect to a novel tan-
gent bundle structure. On the other side another situation is possible, that is, the
one in which the given vector field is made into a second order one by selecting
an appropriate tangent bundle structure. Of course the two situations are strictly
related.
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9.4 Dynamical Systems and Geometrical Structures:
Hamiltonian Picture

As said before, in the Hamiltonian formalism, the fundamental geometric structure
is the Liouville 1-form, θ ,5 whose differential is the canonical symplectic form ω on
the cotangent bundle T∗Q, that is, a closed, non-degenerate 2-form on T∗Q. Once
we have ω and the Hamiltonian function H , we may always write the equation

iXH ω = dH , (9.42)

where XH is a vector field onT∗Q. Unlike the Lagrangian setting, the 2-formω is al-
ways nondegenerate, and thus the previous equation has a unique solutionXH which
is called the Hamiltonian vector field associated with H . It is immediate to check
that XH is such thatLXH ω = 0, and that, in a coordinates system (q, p) adapted to
the cotangent bundle structure of T∗Q, (9.42) “becomes” Hamilton equations:

d

dt
qi = ∂H

∂pi
= {qi, H } d

dt
pi = −∂H

∂qi
= −{pi, H } . (9.43)

Furthermore, it is important to note thatω is independent of the Hamiltonian function
H . It has a “kinematical” character, it is canonically defined on any cotangent bundle
independently of any possible dynamics. This is clearly in contrastwithwhat happens
in the Lagrangian setting where the Lagrangian 2-form ωL always depends on the
Lagrangian function L . In some senseL has both “kinematical” and “dynamical”
contents, while in the Hamiltonian picture the symplectic structure has a kind of
“universal” character.

Since ω is a symplectic form, it is invertible, and its inverse is denoted by �.
We recall that ω defines a base-invariant fiberwise isomorphism between TT∗Q and
T∗T∗Q:

ω | TT∗Q → T∗T∗Q : (q, X) �→ (q, iXω) (9.44)

then � is the inverse of this isomorphism. In a coordinates system (q, p) adapted to
the cotangent bundle structure of T∗Q, we have � = ∂

∂qi ∧ ∂
∂pi

. The bivector field �

allows us to define a Poisson bracket (see [11], Sect. 4.3.1) on smooth functions
on T∗Q in the following way:

{f , g} = �(df , dg) ∀ f , g ∈ C∞(T∗Q) . (9.45)

Clearly, once we have � and H it is immediate to check that (9.42) may be alter-
natively written as

XH = idH � . (9.46)

5θ = γ ◦ Tπ , where γ is a section ofT∗Q and π is the canonical projection of the cotangent bundle.
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It is clear that in general one may use a bi-vector field � which is not invertible
and previous equations would still make sense. Indeed, Hamilton equations may be
formulated starting only with a Poisson Bracket, that is, a bivector field � satisfying
[�, �] = 0, where [ · , · ] denotes the Schouten–Nijenhuis bracket (see Appendix
D in [11]). If � is the inverse of some symplectic form ω, then [�, �] = 0 is
automatically satisfied, but not every Poisson tensor comes from a symplectic form.
Indeed, it would be possible to have a Poisson bi-vector field which is not invertible,
and thus, which is not the inverse of a symplectic form. This is the case, for example,
of the canonical Poisson bi-vector field on the dual of the Lie algebra of a Lie group.
As an example, consider the Lie algebra g of a finite-dimensional Lie group G, and
the dual g∗ of g. The elements in g may be identified with the linear functions on
the vector space g∗ by means of the map a �→ fa where a is in g and fa is the linear
function on g∗ given by

fa(ξ) = ξ(a) (9.47)

for every ξ ∈ g. Since the differentials of the linear functions on the vector space g∗
generate the module of differential one-forms on g∗, we may define a bi-vector field
� by

�(dfa, dfb) := f[a, b] , (9.48)

where [ , ] denotes the Lie product in g, and extending � by linearity. Then, the fact
that the bi-vector field � satisfies [�, �] = 0 essentially follows from the fact that
[ , ] satisfies the Jacobi identity (see [11, 21]). Furthermore, it is easy to see that � is
in general not invertible (for instance when g is the Lie algebra of the unitary group
U(H) of some finite-dimensional complex Hilbert space H).

Note that (9.42) is well-defined not only on the cotangent bundle T∗Q of some
configuration space Q, but may be defined on any symplectic manifold in the sense
that if M is any 2n-dimensional smooth manifold endowed with a symplectic form
ω, then, it always makes sense to define the Hamiltonian vector field associated with
a given Hamiltonian function according to (9.42), for instance, on the 2-dimensional
sphere. Furthermore, (9.46), as we have already remarked, makes sense in an even
more general context becauseMneeds not be even-dimensional in order for a Poisson
bivector � to exists on it.

Now, let us consider a Hamiltonian vector field system with respect to the sym-
plectic structure given by �. Let us consider a diffeomorphism φ | M → M. It is
immediate to check that (9.42) changes equivariantly in the sense that φ∗� is another
symplectic form on M, and φ∗XH is the Hamiltonian vector field associated with
φ∗H by means of φ∗�. If φ is a symmetry for our Hamiltonian vector field (that
is, φ∗XH = XH ), then, we set �φ := φ∗�, and we define the (1, 1) tensor field
associated with φ and the initial symplectic form

Tφ = � ◦ �φ . (9.49)

Since � and �φ are invariant with respect to XH , it follows that Tφ is also invariant.
Then, according to [13] [Formula (2.4.12) at p. 170], it is possible to define the T -
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differential, say dT which acts on functions as T ◦ d. Now, given a smooth constant of
themotion for ourHamiltonianfield, that is, a smooth function f such thatLXH f = 0,
it is possible to define the following closed 2-form on M

ωf = ddT f . (9.50)

It is immediate to check that ωf is invariant with respect to XX , indeed

LXH ωf = LXH (ddT f ) = d
(LXH (T ◦ df )

) =
= d

((LXH T
) ◦ df

) + d
(
T ◦ LXH (df )

) = 0 .
(9.51)

If ωf is nondegenerate (i.e., symplectic), this is equivalent to iXH ωf being a non-
zero closed 1-form. It may happen that iXH ωf is actually exact (for instance if
M is contractible), in which case we obtain another Hamiltonian description of
XH with respect to another symplectic form and another Hamiltonian function.
It is worth noting that this procedure may be iterated, that is, out of any constant
of the motion one may construct an invariant 2-form which, if non-degenerate, is
a new, alternative, symplectic form. Moreover, consider two of such symplectic
forms, say ω1 and ω2, and consider the two associated Poisson bracket. If their sum
is again a Poisson bracket, then the two symplectic structure are compatible in the

sense of Magri
6 that is, the recursion operator N = ω

�
2 ω


1 may have n simple

eigenvalues which may turn out to be n functionally independent constant of the
motion in involution and thus, by Arnold- Liouville theorem, the Hamiltonian,
with respect both the symplectic structures, field is also completely integrable.

To resume, starting with a symplectic structure, an Hamiltonian and a symmetry
for the correspondingHamiltonianvector fieldwhich is not a canonical symmetry, it is
possible to construct, in principle, other symplectic forms that provide an alternative
description of the same Hamiltonian field. Moreover, under suitable conditions, they
are compatible in the sense of Magri and thus guarantee the complete integrability
of the Hamiltonian system (see also [22]).

9.5 Dynamical Systems and Geometrical Structures:
Quantum Systems

The existence of alternative symplectic structures invariant under the infinitesimal
action of a dynamical vector field allows for the existence of alternative quantum
descriptions as it may be shown by means of the Weyl formalism. The subject of this
section is to briefly review how these alternative quantum descriptions arise. For this
purpose, we need to recall what Weyl systems are. Let us consider a symplectic
vector space (V, ω), and a complex, separableHilbert space sayH . AWeyl system

6See [22].
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is a map from V to the group U(H) of unitary operators over H

W | V → U(H) : z �→ W (z) (9.52)

such that
W (z + z′) = W (z)W (z′) e− i

2�
ω(z, z′) , (9.53)

so that
W (z)W (z′) = W (z′)W (z) e

i
�

ω(z, z) , (9.54)

which means that the operators associated with elements in the same Lagrangian
subspace7 of (V, ω) commute. Furthermore, W is required to be strongly con-

tinuous, that is, it must hold that

limz→z0 ||W (z) − W (z0)||sup = 0 (9.55)

where || · ||sup is the sup norm on the Banach space of linear operators over H ,
OP(H).

From(9.53), it follows thatwhen z and z′ are in the sameone-dimensional subspace
of V, that is, z′ = az for some a ∈ R, then:

W (z + z′) = W (z)W (z′) , (9.56)

that is,W (az) is a one-parameter group of unitary operators labelled by the parameter
a ∈ R. BeingW strongly continuous, theStone- Von Neumann theorem implies
that

W (az) = eia G(z) (9.57)

for some (possibly unbounded) self-adjoint operator G. Thus, (9.54) may be written
as

ei G(z)ei G(z′) e−i G(z)e−i G(z′) = e
i
�

ω(z, z′) , (9.58)

from which we recognize Weyl commutation relations. If {φt}t∈R is a one-
parameter group of symplectomorphisms, then we can define:

Wt (z) =: W (φt(z)) . (9.59)

This is a one parameter group of unitary transformations which may be represented
as a similarity transformation by means of a one-parameter group of automorphisms
on the space of operators, namely {φt}:

Wt (z) = eitĤ W (z) e−itĤ , (9.60)

7We recall that given a symplectic vector space, say (V, ω), a Lagrangian subspace ofVwith respect
to the symplectic structure ω, say L, is a subspace L = {z ∈ V : ω(zi, zj) = 0 ∀zi, zj ∈ L}.
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where Ĥ is the infinitesimal generator derived by Stone-Von Neumann theorem.
In some cases, φt may arise as the flow associated with the dynamical evolution
generated by a linear vector field � on V.

At this point, it is impossible not to recall von Neumann’s theorem. This theorem
states that Weyl systems do exist for any finite-dimensional symplectic vector space
V, and provide an explicit realization for both W and the Hilbert space H . Specif-
ically, V is decomposed (in a not unique way) into the direct sum of Lagrangian
subspaces,8 V = L1 ⊕ L2, and we define U =: W |L2 and V =: W |L1 . Then, the
Hilbert spaceH is realized as the spaceH = L2 (L, dnx) of square-integrable com-
plex functions with respect to the translationally-invariant Lebesgue measure on the
Lagrangian subspace L1. Finally, the Weyl system is realized as follows:

(V (z1) ψ) (x) = ψ (x + z1) (9.61)

(U (z2) ψ) (x) = eiω(x,z2)ψ (x) .

where z1, x ∈ L1 and z2 ∈ L2. Setting z1 ≡ q and z2 ≡ p, the infinitesimal generators
of U (z1) and V (z2) are:

V (z1) = eiq
jPj → (

Pj ψ
)
(x) = i

d

dxj
ψ(x)

U (z2) = eipjQ
j → (

Qj ψ
)
(x) = qjψ(x) .

(9.62)

The definition of Weyl system, as well as its explicit realization given by von Neu-
mann’s theorem, depends on both the linear structure and the symplectic formω onV.
Specifically, von Neumann’s theorem states that the realizations of aWeyl system on
the Hilbert spaces of square-integrable functions on different Lagrangian subspaces
of the same symplectic vector space are unitarily related. This means that every
invertible smooth map φ fromV to itself such that it preserves the given linear struc-
ture and symplectic bilinear form ω on V, will give rise to a unitary transformation
between the von Neumann realization of (V, ω) on the space of square-integrable
functions on the Lagrangian subspace L with respect to the Lebesgue measure on
it, and the von Neumann realization of (V, ω) on the space of square-integrable
functions on the Lagrangian subspace φ(L) with respect to the Lebesgue measure
on it.

This result clearly depends on the fact that we fix the linear structure as well as the
symplectic form on V. Consequently, if alternative linear structures and alternative
symplectic forms are given on the same set V, we obtain alternative Weyl systems
as well as alternative realizations of Weyl systems in terms of the von Neumann
theorem. This instance is thoroughly investigated in [23], and will be briefly recalled
here by means of a concrete example.

8Given an even dimensional symplectic vector space, such a decomposition is always possible ([11],
Sect. 5.2.2).
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Consider a symplectic vector space (V, ω), where V = R
2 with the standard

vector space structure, and let (q, p) be Cartesian coordinates adapted to the linear
structure of V in which ω takes its canonical form. Next, consider the nonlinear
diffeomorphism φ of V to itself given by:

(Q, P) ≡ φ(q, p) := (qK(|q|), p) , (9.63)

where K is a smooth function, such that K(|q|) + q ∂K(|q|)
∂q �= 0, in order for this to

represent a diffeomorphism.Wemay use (Q,P) as Cartesian coordinates adapted to a
new linear structure on V = R

2 given by the addition operation (Q,P) + (Q′,P′) =
(Q + Q′,P + P′) and the scalar multiplication operation a · (Q,P) = (aQ, aP)with
a ∈ R. This new vector space will be denoted by Vφ . Note that the vector space
structure onVφ may be described in the old vector spaceV by the following addition
and scalar multiplication operations expressed in the old coordinates:

(q, p) +φ (q′, p′) := φ−1(φ(q, p) + φ(q′, p′)) (9.64)

a ·φ (q, p) := φ−1(a · φ(q, p)) , (9.65)

where + and · are the addition and scalar multiplication operations on Vφ . Then, we
may take ωφ to be the symplectic bilinear form onVφ which takes its canonical form
with respect to (Q,P) and define the symplectic vector space (Vφ, ωφ). Note that
the symplectic vector spaces (V, ω) and (Vφ, ωφ) are nonlinearly related by means
of φ.

Now,webuild theWeyl systemassociatedwith (V, ω)by selecting theLagrangian
subspaceL = span{ (q, 0) } endowed with the Lebesgue measure dμ = dq, so that
the Hilbert space of the von Neumann representation is L2(L, dq). The operatorsU
and V are then defined by:

(U (α)ψ)(x) = eiαqψ(x)

(V (β)ψ)(x) = ψ(x + β)
(9.66)

whose generators turn to be x̂ = q and π̂ = −i ∂
∂q which satisfy the canonical com-

mutation relations on the Hilbert space L2(L, dq). From these generators we may
build the creation and annihilation operators â† = x̂−iπ̂√

2
and â = x̂+iπ̂√

2
, so that the

Hilbert space L2(L, dq) “arises” as the Fock space generated by:

|n〉 = 1√
n! (â

†)n |0〉 (9.67)

with n = 0, 1, 2, . . . , n, . . . and where |0〉 is the vacuum state annihilated by â.
Similarly, we build the Weyl system associated with (Vφ, ωφ) by selecting the

Lagrangian subspace L′ = span{ (Q, 0) } endowed with the Lebesgue measure
dμ = dQ, so that the Hilbert space is L2(L′, dQ) and the operators U ′ and V ′
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are given by:
(U ′(α)ψ)(x′) = eiαQψ(x′)
(V ′(β)ψ)(x′) = ψ(x′ + β)

(9.68)

whose generators turn to be x̂′ = Q and π̂ ′ = −i ∂
∂Q with canonical commutation

relations on the Hilbert space L2(L′, dQ). Again, we may build creation and anni-
hilation operators Â† = x̂′−iπ̂ ′√

2
and Â = x̂′+iπ̂ ′√

2
, so that the Hilbert space L2(L′, dQ)

“arises” as the Fock space generated by:

|N 〉 = 1√
N ! (Â

†)n |0φ〉 (9.69)

with N = 0, 1, 2, . . . , n, . . . and where |0φ〉 is the vacuum state annihilated by Â.
Note that we may realize the operator V ′(β) on the Hilbert space L2(L, dq) where
it implements translations with respect to the addition operation +φ :

(V ′(β)ψ)(x) = ψ(x +φ β) . (9.70)

Now, we note that the Lagrangian subspaces L and L′ coincide because they are
the subspaces characterized by p = P = 0. However, since the linear structure on
V is nonlinearly related with the linear structure on Vφ , it follows that the Lebesgue
measures onL andL′ are no longer linearly related, and thus square integrable func-
tions with respect to one measure need not be square integrable with respect to the
other. In particular, we may obviously look at x̂ and π̂ as linear operators on both
L2(L, dq) and L2(L′, dQ) because L and L′ are the same subsets of R2, however,
it turns out that x̂ is self-adjoint on both the Hilbert spaces, while π̂ is self-adjoint
only on L2(L, dq). Consequently, the algebra “generated” by the operators x̂, π̂ , I

together with their adjoints onL2(L, dq) is actually aC∗-algebras, while that gener-
ated by x̂, π̂ , I together with their adjoints on L2(L′, dQ) is not (see [23] for more
details). From this discussion, it should be clear that, in the construction of Weyl
systems and their associated von Neumann realizations, it should be explicitly stated
the relevant assumption regarding the existence of a specific (and fixed) symplectic
vector space structure on V. Furthermore, it should be clear that, whenever alterna-
tive symplectic vector space structures are available at the same time, we may face
a particularly rich situation in which nonlinearly related formulations of quantum
mechanics are possible.

9.6 Conclusions

The description of a physical system by means of a vector field � on some carrier
manifoldM is something which we should arrive at, rather than to start with. Exper-
imental data provide us with trajectories on some configuration space, and it is part
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of the job of a theoretician to extract a differential equation out of them. As we have
argued in Sect. 9.2, in general it is possible to pass from the experimental trajectories
to an implicit differential equation. This is a subset (hopefully a submanifold) of
some carrier space M which has to be built out of the experimental data. In this
case, obtaining a solution to the inverse problem of the dynamics, that is, finding a
Lagrangian or Hamiltonian description of the given physical system, is particularly
difficult. Some comments on this situation are given in Appendix. However, in some
cases it is possible to pass from the experimental trajectories to an explicit differential
equations the solutions of which are (appropriate lifts of) the trajectories we started
with, and we obtain a vector field � on the carrier manifold M.

After explaining the main points necessary to the construction of � from experi-
mental trajectories, we passed, in Sects. 9.3 and 9.4, to analyse the process of “tenso-
rialization” of the Lagrangian and Hamiltonian description of the physical systems
associated with �. In this way, it is possible to single out the qualitative features that
characterize a given picture of Classical Mechanics, and the possibility of obtaining
alternative Lagrangian or Hamiltonian descriptions for the same physical systems is
clearly enlightened. In the Lagrangian picture, the carrier manifold M turns out to
be diffeomorphic to the tangent bundle TQ of the configuration space Q, and, once
the tangent bundle structure is fixed, alternative Lagrangian descriptions are usually
obtained by means of the construction (if possible) of alternative Lagrangian func-
tions for the same vector field� onM ∼= TQ [13]. However, once the tangent bundle
structure of M is “tensorialized” in the couple (S, �) as it is recalled in Sect. 9.3,
we pointed out that it is also possible to change the tangent bundle structure of M
so that the same vector field � becomes a second order vector field for an alternative
tangent bundle structure, and thus the possibility of a Lagrangian description of �

with respect to this alternative tangent bundle structure has to be investigated. This
instance can also be read from the opposite point of view. Specifically, we may look
for a tangent bundle structure onM (if possible) in which � is a second order vector
field admitting of a Lagrangian description. Furthermore, in some cases it could be
necessary to reparametrize � in such a way that it becomes a complete vector field
(e.g., the Kepler problem), and this reparametrization would in general make the
reparametrized vector field no longer second order with respect to the “old” tangent
bundle structure so that a Lagrangian description for the reparametrized vector field
is not possible. However, we may ask if there is an alternative tangent bundle struc-
ture on M with respect to which the reparametrized vector field is a second order
vector field so that search for a Lagrangian description for the reparametrized vector
field in the “new” tangent bundle structure is meaningful. At the end of Sect. 9.3 we
provided some simple examples where this program can be successfully followed,
and we plan to take on a more systematic analysis of this instance in future works.

In Sect. 9.4, we applied the “tensorialization” process to the Hamiltonian pic-
ture of dynamics. In this case, we showed how the diffeomorphism invariance of
the tensorial description allows us to obtain alternative Hamiltonian descriptions
associated with symmetries and constants of the motion. Specifically, let � be the
dynamical vector field , which is assumed to be the Hamiltonian vector field of some
Hamiltonian function H with respect to the symplectic form ω. If φ : M → M is
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a diffeomorphism which is a symmetry for the dynamics (φ∗� = �), we may form
the symplectic form ωφ = φ∗ω and the (1 − 1) tensor field Tφ = � ◦ ωφ . Clearly,
both ωφ and Tφ are invariant with respect to �. Then, if f is a constant of the motion
for the dynamics (�(f ) = 0), we have that ωf = d dTφ

f = d Tφ(df ) is a two-form
which is invariant with respect to the dynamical vector field �. When ωf is non-
degenerate, it provides us with an alternative Hamiltonian description for � as the
locally Hamiltonian vector field for the closed one-form i�ωf .

In Sect. 9.5,we recalled the deep connection between alternative symplectic vector
space structures and alternativeWeyl systems leading to alternative quantum descrip-
tions and alternative commutation relations. Indeed, a Weyl system is a map from
a symplectic vector space (V, ω) to the group of unitary operators on some Hilbert
space satisfying additional properties (see Sect. 9.5 for details). Consequently, the
existence of alternative linear structures and alternative symplectic structures on V

gives rise to an alternative structure of symplectic vector space onV and to an alterna-
tive realization of the Weyl system by means of von Neumann’s theorem. According
to the discussion in Sect. 9.4, alternative symplectic structures may be “dynami-
cally” obtained starting with a (linear) vector field on V thus showing how to pass
from classical-like trajectories to the quantum commutation relations encoded in the
infinitesimal generators of the Weyl system. Furthermore, the coexistence of nonlin-
early related alternative symplectic vector space structures implies the coexistence of
nonlinearly related alternative formulations of quantummechanics, together with the
coexistence of nonlinearly related alternative procedures of second quantization [24].

Appendix: Inverse Problem for Implicit Differential
Equations

In Sect. 9.2 we saw how, in general, experimental data lead the theoretician to build
a submanifold of TTQ, that is, an implicit differential equation on (a submanifold
of) the tangent bundle TQ. Within this context the inverse problem is much more
complicated to address than it is in the explicit case. Essentially, this is due to the fact
that theEuler-Lagrange equations are formulated bymeans of an implicit differential
equation on T∗Q rather than by means of an implicit differential equation on TQ,
even though the Lagrangian function is defined on the tangent bundle TQ. Indeed,
given the Lagrangian function L , we have dL : TQ → T∗TQ, and thus dL (TQ)

is a submanifold of T∗TQ. By means of the inverse of the canonical Tulczyjew
isomorphism τ : TT∗Q → T∗TQ [25], we obtain a submanifold of TT∗Q, i.e., an
implicit differential equation on T∗Q. Explicitly, we have

dL | TQ → T∗TQ : (qi, vi) �→
(
qi, vi,

∂L

∂qi
,

∂L

∂vi

)
, (9.71)
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while the Tulczyjew isomorphism between TT∗Q and T∗TQ is defined by

τ | TT∗Q → T∗TQ : (qi, pi, v
i
q, vpi) �→ (qi, viq, vpi, pi) (9.72)

(see [25], Sect. 3). This is, in fact, a symplectomorphism mapping the canonical
symplectic form over T∗TQ, i.e., dqi ∧ dpqi + dvi ∧ dpvi, into the canonical sym-
plectic form over TT∗Q, i. e., dviq ∧ dpvi + dqi ∧ dpqi. By composing dL and τ−1

we obtain a submanifold of T∗TQ, say �, given by

� := (
τ−1 ◦ dL

)
(TQ) =

{
(qi, pi, vq

i, vpi) ∈ TT∗Q | pi = ∂L

∂vi
, vpi = ∂L

∂qi

}
.

(9.73)

Writing i� for the canonical immersion of � into TT∗Q, it follows that � is a
Lagrangian (or simply isotropic if L is not regular) submanifold of TT∗Q because

i∗�
(
dviq ∧ dpvi + dqi ∧ dpqi

)
= dviq ∧ d

(
∂L

∂vi

)
+ dqi ∧ d

(
∂L

∂qi

)
= 0 (9.74)

sinceL depends only on (qi, vqi). Note that, with the prescription that vpi = d
dt pi,

it immediately follows that � as defined in (9.73) is the submanifold of TT∗Q on
which the Euler- Lagrange equations

d

dt

∂L

∂vi
= ∂L

∂qi
(9.75)

are identically satisfied.

Remark 5 Asimilar construction is possible for theHamiltonian casewhere it clearly
emerges that the submanifold of TT∗Q one obtains is the graph of a vector field,
that is, the equations are always explicit ones. Consider the cotangent bundle T∗Q
of the configuration space Q and a Hamiltonian function H | T∗Q → R. Via its
differential

dH | T∗Q → T∗T∗Q , (9.76)

we can define a submanifold � of T∗T∗Q by setting � := dH (T∗Q). Differently
from the Lagrangian case, we have that T∗T∗Q is isomorphic to TT∗Q because the
Poisson structure � associated with the canonical symplectic structure over T∗Q
define an isomorphism between differential forms and vector fields on T∗Q. With
an evident abuse of notation, we denote this isomorphism with �. By means of �,
we obtain the implicit differential equation �(�) on TT∗Q. Denoting by XH the
Hamiltonian vector field associated withH by means of the Poisson tensor �, that
is, XH = �(dH ), the following diagram may be defined:
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TT∗Q T∗T∗Q

T∗Q ,

�

XH dH
(9.77)

and it follows that �(�) is precisely XH (T∗Q). Consequently, being �(�) the
image of T∗Q through a vector field, it emerges that the dynamics is always an
explicit one in the Hamiltonian case, as it is also clear from the standard form of the
Hamilton equations.

We can say that Euler- Lagrange equations force us to work with a La-
grangian submanifold of TT∗Q, while, on the one hand, we saw in Sect. 9.2 how
experimental data would naturally lead us to build a submanifold of TTQ. Conse-
quently, the following question is unavoidable: how can these two seemingly un-
compatible instances be related? The essential difficulty is due to the absence of a
natural, “pre-existing”, symplectic structure on TTQ. To be able to formulate the
inverse problem for the submanifold of TTQ we construct out of the trajectories on
Q, we would need a map:

φ : TQ → T∗Q (9.78)

so that we would be able to map the submanifold of TTQ, that we constructed out
of trajectories, onto a submanifold of TT∗Q by means of the tangent map Tφ:

TTQ TT∗Q

TQ T∗Q

Q

πT

Tφ

πT∗
φ (9.79)

It may happen that the Lagrangian function itself could provide us with the map
φ by means of the fiber derivative

FL | TQ → T∗Q : (qi, vi) �→ πT∗ ◦ τ ◦ dL =
(
qi,

∂L

∂vi

)
. (9.80)
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This map coincides with the map defined by the following diagram:

TTQ T∗TQ TT∗Q

TQ T∗Q

Q

πT

TFL

τ

πT∗dL

FL (9.81)

By means of the fiber derivative, the canonical symplectic structure � = dpi
∧ dqi and its potential θ = pidqi on T∗Q can be pulled-back on TQ to obtain

θL = (FL )∗θ = ∂v
i L dqi

�L = (FL )∗� = ∂2L

∂qi∂vj
dqi ∧ dqj + ∂2L

∂vi∂vj
dvi ∧ dqj .

(9.82)

By means of its tangent map, TFL , the symplectic structure on TT∗Q and its
potential, �̇ and θ̇ , can be pulled-back on TTQ:

θ̇L = (TFL )∗θ̇

�̇L = (TFL )∗�̇ .
(9.83)

Note that, in general, �L and �̇L are no longer symplectic form because they may
present a kernel which depends on L .

In conclusion, the Lagrangian plays a double role within the formulation of the
inverse problem for implicit differential equations. First, it defines a Lagrangian sub-
manifold� of TT∗Q, which represents the Lagrangian formulation of the dynamics.
Second, it allows for the definition of a fiber derivative FL which, if suitable reg-
ularity conditions on L are satisfied, would make it possible to impose that the
pre-image of � through TFL coincide with the submanifold of TTQ on which
the experimental data naturally live. See also Sect. 2.1 in [17] for another discussion
about the inverse problem for implicit differential equations.
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Chapter 10
On the Thermodynamics
of Supersymmetric Haldane–Shastry
Spin Chains

F. Finkel, A. González-López, I. León and M. A. Rodríguez

Abstract In this short report we present some recent results on the thermodynamics
of su(m|n) supersymmetric spin chains of Haldane–Shastry type, with long-range
position-dependent interactions. We first evaluate their partition function, and then
show how to express it in terms of supersymmetric Haldane motifs. This key step
makes it possible to derive the thermodynamic functions of the system in closed form
through a modification of the usual transfer matrix approach. In particular, from the
low-temperature behavior of the free energywe obtain a full description of the critical
behavior of these chains for low values of m and n.

10.1 Introduction

The construction and study of simple models of complex physical systems often
gives valuable insights on their characteristic properties. Thus, in condensed matter
physics, magnetism and other related fields, spin chains have been a crucial ingredi-
ent of many theories capturing the key physical properties of complex phenomena. In
particular integrable spin chains, which allow a complete description of the spectrum
in closed form, have played an important role in this respect, even when they are sub-
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stantially simplified versions of the real systems theymodel. A paradigmatic example
of this assertion is provided by the spin chain independently introduced by Haldane
[25] and Shastry [33], which can be solved [18] by exploiting its connection to the
integrable dynamical spin Sutherland model [24] using the so called Polychronakos
freezing trick [31]. This model is of fundamental importance in condensed matter
physics, since it is the simplest example of a system featuring fractional statistics [2,
13, 22, 23, 26, 28], and is also closely related to the one-dimensional Hubbardmodel
of high-temperature superconductivity.

The Haldane–Shastry (HS) spin chain consists of N spins on fixed equispaced
positions in a circular lattice, with long-range two-body interactions inversely pro-
portional to the (chord) distance between the spins. This model has been extensively
generalized in several substantially different directions without losing its integrabil-
ity properties, which essentially stem from an underlying Yangian symmetry [11].
In the first place, while the original HS chain is closely related to the simple Lie
algebra AN−1 (since the interaction depends only on the differences between the site
coordinates), analogous models related to other simple algebras like BCN , BN , DN ,
etc., have also been considered (see, e.g., [3–5, 17]). Secondly, the two-body inter-
action between the spins can in general be an elliptic Weierstrass-℘ function of their
distance, including as important degenerate cases rational, trigonometric or hyper-
bolic functions. Finally, although the original HS chain featured spin 1/2 particles,
the extensions of HS-type chains to su(m) and supersymmetric (su(m|n)) spin have
also been successfully achieved (see, e.g., [6, 7, 9, 27, 29]). In this work we shall
be mainly concerned with the supersymmetric versions of the three families of spin
chains of HS type with rational, trigonometric and hyperbolic interaction potentials
related to the AN−1 algebra, respectively referred to as the Polychronakos–Frahm
(PF) [20, 32], Haldane–Shastry and Frahm–Inozemtsev [21] (FI) chains.

The aim of this research is twofold. First of all, we shall compute the partition
function of supersymmetric spin chains of HS type by taking advantage of their con-
nection with supersymmetric dynamical spin Calogero–Sutherland models. We will
then show that this partition function coincides with that of a suitable inhomogeneous
vertex model, whose spectrum can be described using the supersymmetric version
of Haldane’s motifs. Using the latter description we shall achieve our second main
goal, namely that of computing in closed form the free energy per site (and, hence,
other thermodynamic functions of interest like the magnetization, densities, etc.) in
the thermodynamic limit. By analyzing the asymptotic behavior of the free energy
at low temperatures and comparing it to that of a 1 + 1 dimensional conformal field
theory (CFT) [1, 12], we shall be able to determine the critical behavior of themodels
under study as a function of the chemical potentials of each species. In particular,
we shall compute the value of the central charge of the corresponding CFT in each
of the critical regions in chemical potential space.

We shall end by outlining the organization of this report. Section10.2 contains
some basic facts, setting the notation and defining the models under consideration. In
Sect. 10.3 we will evaluate their partition functions in closed form, while Sect. 10.4
is devoted to the computation of the free energy per site in the thermodynamic limit.
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The asymptotic behavior of the free energy at low temperature is derived in Sect. 10.5,
and it is then applied to the analysis of the criticality properties of the su(1|1)models.
Finally, we present our conclusions and some comments on future work in Sect. 10.6.

10.2 Preliminaries

We introduce in this section themodels under consideration and the notation andmain
ingredients of the theory. The model we shall be interested in is a supersymmetric
su(m|n) spin chain, that is, a one-dimensional lattice eachofwhoseN sites is occupied
by a particle with m bosonic and n fermionic degrees of freedom. The states of this
system belong to the Hilbert space �(m|n) = ⊗N

i=1C
m+n with basis:

|s〉 = |s1 . . . sN 〉 = |s1〉 ⊗ · · · ⊗ |sN 〉, si ∈ {1, . . . ,m + n} (10.1)

The supersymmetric character of the chain is introduced by considering the state |si〉
as bosonic if si ∈ {1, . . . ,m} or fermionic if si ∈ {m + 1, . . . ,m + n}. The exchange
operator, P(m|n)

ij (with i < j), acts on this Hilbert space in the usual way:

P(m|n)
ij |s1 . . . si . . . sj . . . sN 〉 = εij(s)|s1 . . . sj . . . si . . . sN 〉 , (10.2)

The sign εij(s) ∈ {±1} is 1 if both si and sj are bosons, −1 if they are both fermions,
and (−1)r if one of them is a boson and the other is a fermion, r being the number
of fermions in the positions i + 1, . . . , j − 1. We shall also need in what follows the
number operators Nα, defined by

Nα|s〉 = Nα(s)|s〉, (10.3)

where Nα is the number of particles with spin sα in the basis state |s〉.
We are now ready to write the Hamiltonian of the model:

H =
∑

i<j

Jij(1 − P(m|n)
ij ) −

m+n−1∑

α=1

μαNα ≡ H0 + H1 (10.4)

The first termH0 is a spin chain Hamiltonian, while the coefficient μα in the second
term can be regarded as the chemical potential of the α-th species. We shall study
the supersymmetric version of integrable Haldane–Shastry spin chains of AN−1 type,
for which the coupling constants Jij are given by

J

2 sin2(ξHSi − ξHSj )
,

J

(ξPFi − ξPFj )2
,

J

2 sinh2(ξFIi − ξFIj )
(10.5)
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In the latter equation J �= 0 is a real constant, ξHSi = iπ/N , ξPFi are the zeros of the
Hermite polynomial of degree N and e2ξ

FI
i are the zeros of the Laguerre polynomial

Lc−1
N with c > 0. A set of symmetries of this Hamiltonian (relating the su(m|n) and

su(n|m) models with suitable values of the chemical potentials μα) can be readily
found, but we will not insist in these details here. The interested reader can find a
complete discussion in [19].

10.3 Partition Function and Spectrum

The partition function provides a compact way of expressing the spectrum of the
model under study. Its computation will be carried as is customary with this type
of models by exploiting their relation with the dynamical spin models of Calogero–
Sutherland type (to be precise, of AN−1 type) through the Polychronakos freezing
trick.

The spin models of Calogero–Sutherland type are constructed as a generalization
of the well-known scalar models. In the simplest (rational) case, the scalar Calogero
model [14] Hamiltonian is given by

Hsc = −
∑

i

∂2
xi + a2

∑

i

x2i +
∑

i �=j

a(a − 1)

(xi − xj)2
(10.6)

Introducing the spin interaction using spin exchange operators (in our case, of su-
persymmetric type) we obtain the Hamiltonian of the spin Calogero model:

H0 = −
∑

i

∂2
xi + a2

∑

i

x2i +
∑

i �=j

a(a − P(m|n)
ij )

(xi − xj)2
(10.7)

Introducing the operator

h(x) = J
∑

i<j

1 − P(m|n)
ij

(xi − xj)2
−

m+n−1∑

α=1

μαNα (10.8)

which yields the Hamiltonian of the PF spin chain when the coordinates (dynamical
variables) xi are replaced by the chain sites ξi, we can write

H ≡ H0 + 2a

J
H1 = Hsc + 2a

J
h(x) (10.9)

When a → ∞, the eigenfunctions of the Hamiltonian H concentrate around the
coordinates of the equilibrium position of the scalar potential
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U (x) =
∑

i

x2i +
∑

i �=j

1

(xi − xj)2
(10.10)

which can be easily proved to be unique (in the configuration space A = {x ∈
RN : x1 < · · · < xN }) and coincide with the zeros of the Hermite polynomial of
degree N , that is, the chain sites. By (10.9), the energies ofH are then approximately
given by

Eij 	 Ei + 2a

j
ej

where Ei and ej respectively denote the energies of the scalar Calogero model and the
spin chain (10.4). The latter equation cannot be directly used to solve for the energies
ej, since we don’t know a priori how the energies of the spin Hamiltonian (10.9) com-
bine with those of the scalar Calogero model. Instead, we can exploit this equation
in order to express the partition function Z of the spin chain as the a → ∞ limit
of the quotient of the partition functions of the dynamical spin model and the scalar
one, namely

Z(T ) = lim
a→∞

Z(2aT/J )

Zsc(2aT/J )
(10.11)

This is the essence of Polychronakos’s freezing trick.
The computation of the partition function of the scalar model is straightforward,

with the result

lim
a→∞ q−JEGS/(2a)Zsc(2aT/J ) =

∏

i

(1 − qiJ )−1, q ≡ e−1/T (10.12)

where
EGS = aN + a2N (N − 1) (10.13)

is the ground state energy of both the scalar and the spinCalogeromodel. On the other
hand, the computation of the partition function of the spin dynamical model (with a
chemical potential) is rather involved and here we will only outline it, referring to
[19] for the complete details. We shall first compute the spectrum of H0 and then,
since H0 and H1 obviously commute, we will easily obtain the spectrum of H .

To begin with, we extend symmetrically the configuration space from the Weyl
chamberA to thewhole spaceRN . The extension is equivalent to the originalHamilto-
nian (they have the same spectrum) provided that we symmetrize the wave functions
of the extended Hamiltonian.More precisely, ifΛ denotes the total symmetrizer with
respect to both the spatial and spin coordinates (taking care of the supersymmetric
character of the model), it can be proved thatH is given by an upper triangular matrix
in a basis with states of the form

|n, s〉 = Λ
(
ρ(x)

∏

i

xnii |s〉
)
, ρ(x) = e− a

2

∑
i x

2
i

∏

i<j

|xi − xj|a (10.14)
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where n = (n1, . . . , nN ) with ni ∈ Z≥0. Note that ρ is simply the ground state of the
scalar Calogero model. In fact, in order to select a basis among these states we have
to impose some restrictions due to their symmetry under permutations, namely

(i) ni ≥ ni+1, i = 1, . . . ,N − 1
(ii) if ni = ni+1 then si ≤ si+1 if si is bosonic or si < si + 1 if si is fermionic

The energies of the Hamiltonian H0, which can be directly read from the diagonal
of this matrix, are given by

E0
n,s = 2a|n| + EGS, |n| =

∑

i

ni (10.15)

Since H1 is obviously diagonal in the above basis, namely

H1|n, s〉 = −
( ∑

i

μsi

)
|n, s〉 (10.16)

the spectrum of the full Hamiltonian H is simply

En,s = 2a|n| − 2a

J

∑

i

μsi + EGS (10.17)

In order to compute the partition function of H , we still have to determine the
(intrinsic) degeneracies of the energy levels just found. Since En,s is independent
of s, these are simply the number of spin configurations s compatible with a given
multiindex n according to the above two rules. The procedure in this kind of super-
symmetric models is based on the close relation of these degeneracies with the two
standard families (complete and elementary) of symmetric polynomials in N vari-
ables, respectively denoted by hi(x) and ei(x), and to their supersymmetric extensions
defined by

Ek(x1, . . . , xm|y1, . . . , yn) =
∑

i+j=k

hi(x1, . . . , xm)ej(y1, . . . , yn) (10.18)

(see, e.g., [30]). The partition function can then be written as [19]

lim
a→∞ q−JEGS/(2a)Z(2aT/J ) =

∑

k∈PN

�(k)q
∑r−1

i=1 JKi

r∏

i=1

(1 − qJKi )−1 (10.19)

where PN are the ordered partitions of N (of any allowed length r), k = (k1, . . . , kr)
and Ki = ∑i

j=1 kj. The term �(k), which takes care of the degeneracy of the energy
levels, is given by
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�(k) ≡ Ek(q
−μ1 , . . . , q−μm |q−μm+1 , . . . , q−μm+n)

=
r∏

i=1

eki (q
−μ1 , . . . , q−μm |q−μm+1 , . . . , q−μm+n)

with μm+n = 0. This construction is based on the properties of the symmetric poly-
nomials and their supersymmetric counterparts, and in particular on the fact that the
value of h at the point (1, . . . , 1) is the number of combinations with repetitions
while the value of e at the same point is the number of combinations [30]. We can
now construct the partition function of the spin chain (10.4) with rational interac-
tions (10.5) by taking the quotient of the partition functions (10.19) and (10.12), with
the result

Z(T ) =
∑

k∈PN

�(k)q
∑r−1

i=1 JKi

N−r∏

i=1

(
1 − qJK

′
i
)

(10.20)

where {K ′
1, . . . ,K

′
N−r} = {1, . . . ,N − 1} \ {K1, . . . ,Kr−1}. By repeating the same

procedurewith the trigonometric and hyperbolic interactions (10.5), we finally obtain
the following remarkable formula for the partition function of all three chains of HS
type (10.4)–(10.5):

Z(T ) =
∑

k∈PN

�(k)q
∑r−1

i=1 JE(Ki)

N−r∏

i=1

(
1 − qJE(K ′

i )
)

(10.21)

where the dispersion function E is given by

EHS(i) = i(N − 1)

EPF(i) = i

EFI(i) = i(i + c − 1)

The latter expression for the partition function contains all the information needed
to study the spectrum. Given m and n, the number of degrees of freedom of bosons
and fermions, and the number of particles N , we can find the energy levels and
their degeneracies. In fact, this expression can be easily implemented in a symbolic
manipulation program. However, this form of the partition function is not suitable
for the study of the thermodynamics of the chain, as we would need to take its
limit when N goes to infinity and this cannot be easily achieved. We shall instead
show the equivalence of the Hamiltonian (10.4)–(10.5) with a suitable vertex model.
This will allow us to write the partition function in a form suited for studying the
thermodynamic properties of our model.

The vertex model referred to above is a one-dimensional array of N + 1 sites and
N links which can take one of m possible bosonic or n fermionic values. A state can
thus be described by a bond vector σ = (σ1, . . . ,σN ), where σi is the value of the
bond i. The energy of such a configuration σ is then defined as
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E(m|n)(σ) = J
N−1∑

i=1

δ(σi,σi+1)E(i) (10.22)

where E(i) is the dispersion relation previously found for each of our chain models
and δ(i, j) is 0 when i < j or i = j is a bosonic value, and 1 if i > j or i = j is
fermionic. Let us now define, following [10], the generalized partition function

ZV (q; x|y) =
m+n∑

σ1,...,σN=1

m∏

α=1

xNα(σ)
α

n∏

β=1

y
Nm+β(σ)

β qE
(m|n)(σ) (10.23)

where Nα(σ) is the number of bonds in the vector σ equal to α, in terms of which
the partition function ZV of the vertex model with energy (10.22) is given by

ZV (q) = ZV (q; 1, . . . , 1|1, . . . , 1) (10.24)

The usefulness of the vertex model is brought out by showing that its generalized
partition function gives, for a particular value of the variables (x, y), the partition
function of our spin chains:

Z(q) = ZV (q; q−μ1 , . . . , q−μm |q−μm+1 , . . . , q−μm+n) (10.25)

This result follows from an alternative form of expressing the generalized partition
function in terms of Schur polynomials [30], namely

ZV (q; x|y) =
∑

k∈PN

Sk(x|y)q
r−1∑
i=1

JE(Ki)

(10.26)

and the identity

∑

k∈PN

Sk(x|y)q
r−1∑
i=1

JE(Ki) =
∑

k∈PN

Ek(x|y) q
r−1∑
i=1

JE(Ki)
N−r∏

i=1

(
1 − qJE(K ′

i )
)

(10.27)

proved in [8] and [10]. Comparing with (10.21) we easily obtain (10.25), which can
equivalently be written as

Z(q) =
m+n∑

σ1,...,σN=1

q
E(m|n)(σ)−

m+n∑
α=1

μαNα(σ)

(10.28)

As a consequence, the spectrum can be expressed in terms of the supersymmetric
version of Haldane’s motifs [8, 10, 26], δi(σ) ≡ δ(σi,σi+1), as
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E(σ) = E(m|n)(σ) −
m+n∑

α=1

μαNα(σ) = J
N−1∑

i=1

δi(σ) E(i) −
∑

i

μσi . (10.29)

This is the equation we shall use in the next section to study the thermodynamics of
the supersymmetric chains (10.4)–(10.5).

10.4 The Free Energy

Since we are interested in the behavior of the thermodynamic functions when N →
∞, we need to rescale the coupling constant of the model to ensure that the extensive
functions become proportional to N in this limit. For instance, for the PF chain

N−1∑

i=1

E(i) = 1

2
N (N − 1) (10.30)

so that we should choose the coupling constant as J = K/N with K = constant in
order that the mean energy remains finite when N → ∞. Of course, similar results
hold for the PF and FI chains (see [19]). We then define a rescaled dispersion relation

ε(xi) = J

K
E(i), with ε(x) = x, xi = i

N
(10.31)

To compute the free energy we will use a generalization of the transfer matrix
method. To this end, we first write the energy (10.29) in terms of the rescaled dis-
persion relation, as

E(σ) =
N−1∑

i=1

[
Kδ(σi,σi+1)ε(xi) − 1

2
(μσi + μσi+1)

]
− 1

2
(μσ1 + μσN ) (10.32)

and if A(x) is the matrix defined by its elements:

Aαβ(x) = qKε(x)δ(α,β)− 1
2 (μα+μβ), α,β = 1, . . . ,m + n (10.33)

the partition function can be written as the trace of a product of these matrices:

Z(q) = tr
[
A(x0)A(x1) . . .A(xN−1)

]
(10.34)

The easiest case would correspond toA(xi) ≡ Ai being diagonal, since the product
and the trace are then trivially computed. Although this is not the case for our models,
we can at least convertAi into its Jordan form Ji. It is not hard to prove that thematrices
Pk turning Ak into their Jordan form satisfy P−1

i Pi+1 = 1 + O(N−1). It can then be
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shown that when N → ∞ the free energy per site

f (T ) = −(T/N ) logZ

behaves as

f (T ) 	 − T

N
log tr(UJ0 . . . JN−1), U = lim

N→∞P−1
N−1P0 (10.35)

We will now assume that the matrix J0 . . . JN−1 is diagonal, as can be shown to be
the case for the su(1|1) models we shall mainly deal with in this report. In that case

tr(UJ0 . . . JN−1) =
m+n∑

α=1

UααΛα, Λα =
N−1∏

i=0

λα(xi) (10.36)

where λα(xi) are the eigenvalues of A(xi). A straightforward argument, based on
the fact that the elements of A(x) are strictly positive and the application of the
Perron–Frobenius theorem, leads to the approximate equality

tr(UJ0 . . . JN−1) 	 U11

N−1∏

i=0

λ1(xi) (10.37)

where λ1(xi) is the largest eigenvalue (in module) of A(xi) (simple and positive). The
free energy per site can be written in the thermodynamic limit as:

f (T ) = −T lim
N→∞

1

N

N−1∑

i=0

logλ1(xi) = −T
∫ 1

0
logλ1(x)dx (10.38)

This simple expression [valid for all the models discussed in this report, as well as
other models with energies given by an expression of the form (10.29)] allows for
a complete study of the thermodynamic properties of these chains. All the standard
thermodynamic functions such as the density of spins of a given type, the internal
energy, the heat capacity and the entropy can be easily computed once the free
energy is known. In the next section we will study in some detail the simplest case
of supersymmetric spin chains of HS type, namely the su(1|1) models.

10.5 The su(1|1) Supersymmetric Spin Chain

We will consider in this section the simplest case m = n = 1 of the supersymmetric
spin chains (10.4)–(10.5). Due to the symmetry properties of these chains [19], we
can actually restrict our attention to the case K > 0. The 2 × 2 matrix A in this case
is simply given by
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A(x) =
(

q−μ q−μ/2

qKε(x)−μ/2 qKε(x)

)
(10.39)

where μ = μ1 is the only chemical potential of this model. The matrix has a zero
eigenvalue, the other one being

λ1 = qKε(x) + q−μ (10.40)

and is therefore diagonalizable. The free energy is then given by (10.38), which in
this case reads

f (T ,μ) = −μ − T
∫ 1

0
log

(
1 + e−β(Kε(x)+μ)

)
dx (10.41)

Note that, in contrast with previous approaches based on the equivalence of the spin
chain (10.4) of HS type with a free fermion model (see, e.g., [15]), this formula is
valid for all three families of HS chains under study.

We will next analyze the critical behavior of the su(1|1) chains of HS type. To
this end, recall [1, 12] that as T → 0 the free energy density of a 1 + 1 dimensional
CFT behaves as

f (T ) 	 f (0) − πcT 2

6v
(10.42)

with v the effective speed of light (Fermi velocity) and c the central charge of the
theory. Ascertaining that this asymptotic behavior also holds for the free energy per
site (10.41) of the su(1|1) chains will provide a strong indication of their criticality,
i.e., their conformal invariance, and allow us to determine their central charge as a
function of the chemical potential μ and the coupling constant K .

First of all, it is easy to check that if μ > 0, there is no critical behavior (we are
considering the case K > 0). In fact, in this case, Kε(x) + μ is a positive quantity
for all x in the interval [0, 1] and we have

|f (T ,μ) − f (0,μ)| < T
∫ 1

0
e−β(Kε(x)+μ)dx < Te−βμ (10.43)

which proves that the system is not critical. It is also straightforward to show that if
μ < −Kεmax, where εmax is the maximum of the rescaled dispersion relation in the
interval [0, 1], the behavior of the free energy (10.41) when T → 0 does not match
that of aCFT. Thuswe only need to study three cases,μ ∈ (−Kεmax, 0),μ = −Kεmax

and μ = 0.
Let us first consider the case −Kεmax < μ < 0. To get a result valid for the three

chains, using the symmetry properties of the dispersion relation, we will write the
free energy as:

f (T ,μ) + μ = −ηT
∫ 1/η

0
log

(
1 + e−β(Kε(x)+μ)

)
dx (10.44)
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where η = 2 for the HS chain and 1 for PF and FI chains. By studying the sign of
the exponent of the integrand in this equation we can recast it in the form

f (T ,μ) − f (μ, 0) = −ηT
∫ 1/η

0
log

(
1 + e−β|Kε(x)+μ|

)
dx (10.45)

Clearly, the main contribution to the integral comes from a neighborhood of the
unique root x0 of the equation Kε(x) + μ = 0 in the interval (0, 1/η). Indeed, it
is obvious that the rescaled dispersion relation is monotonically increasing in the
interval (0, 1/η) for all three chains of HS type, and the condition −Kεmax < μ < 0
implies that −μ/K is in the range of ε(x) in this interval. If Δ < min(x0, 1/η − x0),
the expression

I(T ) =
∫ x0+Δ

x0−Δ

log
(
1 + e−β|Kε(x)+μ|

)
dx (10.46)

approximates the integral in (10.45) with an error given by

∫

A
log

(
1 + e−β|Kε(x)+μ|

)
dx <

∫

A
e−β|Kε(x)+μ|dx < e−βκ (10.47)

where A = [0, 1/δ] \ (x0 − Δ, x0 + Δ) and κ = min(−μ − ε(x0 − Δ),μ + ε(x0 +
Δ)). The change of variables:

y = β|Kε(x) + μ| (10.48)

in each of the intervals [x0 − Δ, x0] and [x0, x0 + Δ] and a Taylor expansion of the
factor 1/ε′(x) in a neighborhood of x0:

1

ε′(x)
= 1

ε′(x0)
+ O(Ty) (10.49)

allows us to write the integral (10.46) as

I(T ) = 2T

Kε′(x0)

∫ ∞

0
log(1 + e−y)dy + O(T 2) = π2T

6Kε′(x0)
+ O(T 2) (10.50)

(indeed, the error incurred in extending the integration interval to +∞ is O(e−κ′β)).
Thus the asymptotic behavior of the free energy per site (10.41) at low temperatures
is

f (T ,μ) = f (0,μ) − ηπ2T 2

6Kε′(x0)
+ O(T 3) (10.51)

The effective speed of light is proportional in the three types of chains (10.5) to the
derivative of the dispersion relation with respect to the momentum at the point x0.
Some subtle differences appear between the HS chain and the PF and FI chains, since
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in these last cases the chains are not translationally invariant. We shall only quote
here the final result, namely

v = Kε′(x0)
ηπ

(10.52)

(see [19] for the details). The final expression for the behavior of the free energy per
site at low temperatures is thus

f (T ,μ) = f (0,μ) − πT 2

6v
+ O(T 3) (10.53)

This strongly suggests that when −Kεmax < μ < 0 the three su(1|1) chains of HS
type are critical, with central charge c = 1 corresponding to a free CFT with one
bosonic field.

The endpoints μ = −Kεmax and μ = 0 can be examined in a similar fashion. At
μ = 0, the three chains are critical (provided that γ �= 0 for the FI chain) with central
charge c = 1

2 , a free CFT with a fermionic field. If γ = μ = 0 the FI chain is not
critical. At the other endpoint, μ = −Kεmax, the PF and FI chains are again critical
with c = 1

2 , while the HS chain is not (in agreement with [15]).

10.6 Conclusions

We have discussed in this report some recent results on the critical behavior of
supersymmetric spin chains of HS type. A more complete study appears in [19],
where the su(2|1) and su(2|2) cases have also been dealt with in detail. Since the
analytic expression (10.38) for the free energy is based on the knowledge of the
largest eigenvalue of the (m + n) × (m + n) matrix A, it is clear that the complexity
of the calculations greatly increases with these two parameters. However, as shown
in [19], an explicit formula for the free energy can also be derived in the su(2|1)
and su(2|2) cases. In particular, in the su(2|1) case a complete phase diagram (in the
two-dimensional space parametrized by the chemical potentials of the two bosonic
states) has been derived, showing the existence of critical regionswith central charges
which are not integers or half-integers. It has also been found in this case that the
phase transitions are of first order type (discontinuous) in the bosonic densities for
K > 0 (see, again, [19] for the details).

Future work in this field will be dedicated to the study of the existence of first-
order transitions at T = 0 when m + n > 2, with particular emphasis on the mn = 0
case, that is, purely bosonic or fermionic chains with su(k) spin degrees of freedom.
It turns to be that the study of these spin chains presents more difficulties that their
supersymmetric counterparts. In fact, to the best of our knowledge only the su(2)
case has been completely studied [16]. Note, finally, that the supersymmetric chains
considered in this report are of AN−1 type, in the classification of these models



200 F. Finkel et al.

based on their relation to the spin Calogero–Sutherland models. The extension of
the above results to spin chains associated to other root systems, as for instance BCN

case, certainly deserves further attention.
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Chapter 11
Towards a Quantum Sampling Theory:
The Case of Finite Groups

Antonio G. García , Miguel A. Hernández-Medina and Alberto Ibort

Abstract Nyquist-Shannon sampling theorem, instrumental in classical telecom-
munication technologies, is extended to quantum systems supporting a unitary rep-
resentation of a finite group G. Two main ideas from the classical theory having
natural counterparts in the quantum setting: frames and invariant subspaces, pro-
vide the mathematical background for the theory. The main ingredients of classical
sampling theorems are discussed and their quantum counterparts are thoroughly ana-
lyzed in this simple situation. A few examples illustrating the obtained results are
discussed.

11.1 Introduction

Shannon’s celebrated theorems: Shannon-Hartley’s channel capacity theorem [18,
29], Shannon’s source coding theorem [28] and Nyquist-Shannon sampling theo-
rem [25, 29], constitute the backbone of the mathematical background of modern
telecommunication technologies. The development of Quantum Information Tech-
nologies have caused that the first two theorems have already been extended to the
quantum setting (see for instance [9, 32] and references therein) and their quantum
counterparts are today part of the mainstream of Quantum Information.
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Interestingly enough, Nyquist-Shannon sampling theorem has not found a place
in Quantum Information yet. Actually, as far as we know, there is not a genuine
quantum version of it. The classical sampling theorem states, in its more streamlined
form, that band-limited signals f (t) (within the interval [−π, π ] for instance) can be
reconstructed from the family of samples {f (k)} and a given family of signals Sk(t),
k being an integer. More precisely:

f (t) =
∑

k∈Z
f (k)

sin π(t − k)

π(t − k)
, t ∈ R . (11.1)

It is obvious the interest that sampling formulas, similar to the previous one,
would have in the quantum setting as they would provide an alternative way to
describe the states of quantum systems. Thus, if we consider, instead of signals,
vectors |x〉 in a Hilbert space describing pure states of a quantum system, a “quantum
sampling theorem” would provide a way of reconstructing the states from a family
of “samples”, denoted in what follows by {Lx(k)}, k an index, and a prescribed
set of quantum states {|Ck〉}, the analogues of the signals

{
Sk(t) = sin π(t−k)

π(t−k)

}
in

classical sampling theory, (11.1), as |x〉 = ∑
k Lx(k)|Ck〉. Such auxiliary states could

be manufactured independently of the system under scrutiny and all that would be
needed will be to prepare a superposition of them with coefficients the previously
obtained samples.

Arguably, it can be stated that any orthonormal basis {|ek〉} provides a sam-
pling theorem with samples the amplitudesLx(k) = 〈ek |x〉 and with auxiliary states
the orthonormal vectors themselves, i.e., |Ck〉 = |ek〉. Actually, Shannon’s formula
(11.1) is just the orthonormal expansion in the Hilbert space of square integrable
functions in the real line of the function f with respect to the orthonormal basis
{Sk}. Notice however that the orthonormal basis given by the shifted sine-cardinal
functions Sk(t) = sin π(t−k)

π(t−k) has the additional property that the coefficients of the
expansion are the actual values of the function f itself, and the word “sample” has,
in this context, the meaning of the actual value of the function which is precisely the
fact that provides the ground for its technological implementation and it is one of the
main properties of Shannon’s theorem that we would like to extend to the quantum
setting.

We must point out that, certainly, quantum tomography (see for instance [4, 19]
and references therein) aims also in the direction sketched above, however the current
status of the theory doesn’t allow for a clear cut reconstruction theorem as the ones
provides by Shannon’s theorem and its generalizations.

Thus the aim of the present paper is to walk the first steps into the construction of a
rigorous and broad enough sampling theory for quantum systems inspired directly in
the classical sampling theorembyNyquist-Shannon. In order to achieve it,wewill use
some recent ideas underlying a family of classical generalized Shannon’s theorems.
Two ingredients appearing in these generalizations seem to be critical for the devel-
opment of a quantum version: the use of frames and shift-invariant subspaces [16].
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Frames provide a convenient and flexible tool extending the notion of orthonormal
or Riesz bases in Hilbert spaces [8]. Traditionally, frames were used in signal and
image processing, non-harmonic analysis, data compression, and sampling theory,
but nowadays frame theoryplays also a fundamental role in awidevariety of problems
in both pure and applied mathematics, computer science, physics and engineering.
Let us recall that a frame is any sequence of vectors {|ck〉} in a Hilbert space such
that there exist two constants 0 < A ≤ B such that for any vector |x〉 we have

A||x||2 ≤
∑

k

|〈ck | x〉|2 ≤ B||x||2 .

Given a frame {|ck〉} in a Hilbert space the representation property of any vector
|x〉 as a series |x〉 = ∑

k αk |ck〉 is retained, but, unlike the case of orthonormal (Riesz)
bases, the uniqueness of this representation (for overcomplete frames) is sacrificed.
Suitable frame coefficients αk which depend continuously and linearly on |x〉 are
obtained by using dual frames {|dk〉} of {|ck〉}, i.e., {|dk〉} is another frame for the
Hilbert space such that |x〉 = ∑

k〈dk | x〉 |ck〉 = ∑
k〈ck | x〉 |dk〉. Recall that a Riesz

basis in a separable Hilbert space is the image of an orthonormal basis by means of
a bounded invertible operator; a Riesz basis has a unique dual (biorthogonal) basis.
A Riesz sequence in a Hilbert space is a Riesz basis for its closed span. For more
details on the theory of frames see, for instance, the monograph [8] and references
therein.

The redundancy of frames, which gives flexibility and robustness, is the key to
their significance for applications (see, for instance, the nice introduction in Chap.1
of [7] and references therein). It is worth to note that frames in finite dimension
are nothing but spanning sets of vectors. Frames have already been considered in
problems related to this work (see for instance [2, 3], or more recently [5]).

The second ingredient consists of a natural extension of the notion of shift-
invariant subspaces of L2(R), that is, subspaces of functions invariant under the shift
transformation f (t) �→ f (t − 1), that play a fundamental role in classical sampling
theory [16] (see also [1, 30]). The shift transformation defines a unitary operator on
the Hilbert space of square integrable functions on the real line. Hence it is natural
to consider subspaces of a Hilbert space which are invariant under a given unitary
transformationU and to extend to this situation the results of classical sampling the-
ory. This idea has been recently considered in a number of papers (see for instance
the related works [11–13, 15, 24, 27]).

More concretely, to visualize better the role of these two ingredients and to prepare
the ground for the sampling theorem to be derived in this paper, let us describe the
generalized classical sampling theorem that can be obtained combining them and
that we want to extend to the quantum setting. Indeed, let Vsamp be the Hilbert space
where we want to obtain a sampling formula involving the sequence {mk(x)} of
measurements (samples) obtained from each |x〉 ∈ Vsamp. The general mathematical
procedure can be summarized as follows (see [12, 14, 16] for details):
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1. Determine and auxiliary L2-Hilbert space, denoted simply by L2, and an isomor-
phism TV : L2 → Vsamp.

2. Express the available samples {mk(x)} of |x〉 ∈ Vsamp as the inner products
mk(x) = 〈fk | f 〉L2 where {fk} is some fixed sequence in L2, and |x〉 is the image
under TV of the function f .

3. Characterize the above sequence {fk} as a frame for the L2-auxiliary space.
4. Find the dual frames {gk} of {fk}. Thus we have

f =
∑

k

〈fk | f 〉 gk =
∑

k

mk(x) gk .

5. Finally, applying the isomorphism TV in the above expansion we get a sampling
formula in Vsamp. Namely,

|x〉 =
∑

k

mk(x) |TV (gk)〉 .

Moreover, due to the unitary invariant character of Vsamp, the isomorphism TV

satisfies a shifting property which simplifies the obtention of the reconstruction
vectors |TV (gk)〉.

In the particular case of the classical sampling theorem, (11.1), we have that any
band-limited function f can be expressed as

f (t) = 〈 1√
2π

e−iπwt |̂f 〉
L2[−π,π] , t ∈ R , (11.2)

where f̂ denotes the Fourier transform of f . In particular, for the samples of f at k ∈ Z

we have that f (k) = 〈
e−iπkt/

√
2π | f̂ 〉

L2[−π,π], and the isomorphismTV is the inverse

Fourier transformF −1. Since the sequence
{
e−iπkt/

√
2π

}
k∈Z is an orthonormal basis

for L2[−π, π ] we have

f̂ (w) =
∑

k∈Z
f (k)

e−iπkw

√
2π

in L2[−π, π ] ,

and applying F −1,

f (t) =
∑

k∈Z
f (k)F −1

(e−iπkw

√
2π

χ[−π,π](w)
)
(t) =

∑

k∈Z
f (k)

sin π(t − k)

π(t − k)
in L2(R) .

Notice that we have used that F −1
(
χ[−π,π](w)

)
(t) = sin π t

π t and the shifting property
which satisfies the Fourier transform. Cauchy-Schwarz’s inequality in (11.2) proves
the inequality |f (t)| ≤ ‖f ‖, t ∈ R. In other words, here the convergence in norm
implies pointwise convergence which is uniform on R.
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Classical sampling has been generalized in the following way: In L2(R) con-
sider the shift operator U : f (t) �→ f (t − 1). The functions (signals) to be sampled
belong to some (principal) shift-invariant subspace V 2

ϕ := spanL2(R)

{
ϕ(t − n), n ∈

Z
}
, where the generator function ϕ belongs to L2(R) and the sequence {ϕ(t − n)}n∈Z

is a Riesz sequence for L2(R). Thus, the shift-invariant space V 2
ϕ can be described as

V 2
ϕ =

{ ∑

n∈Z
αn ϕ(t − n) : {αn}n∈Z ∈ �2(Z)

}

In particular, spline or wavelet spaces are examples of shift-invariant subspaces V 2
ϕ .

On the other hand, in many common situations the available data are sam-
ples of some filtered versions f ∗ hj of the signal f itself, where the average
function hj reflects the characteristics of the acquisition device. For N convolu-
tion systems (linear time-invariant systems or filters in engineering jargon) Lj f :=
f ∗ hj, j = 1, 2, . . . ,N , assume that, for any f in V 2

ϕ , the sequence of samples
{(Ljf )(rm)}m∈Z; j=1,2,...,N is available, where r ∈ N denotes the sampling period. The
generalized sampling problem mathematically consists of the stable recovery of any
f ∈ V 2

ϕ from the above sequence of its samples. In other words, it deals with the
construction of sampling formulas in V 2

ϕ having the form

f (t) =
N∑

j=1

∑

m∈Z

(Lj f
)
(rm) Sj(t − rm) , t ∈ R , (11.3)

where the sequence of reconstruction functions {Sj(· − rm)}m∈Z; j=1,2,...,N is a frame
for the shift-invariant space V 2

ϕ . In this setting, the isomorphism TV 2
ϕ

: L2(0, 1) →
V 2

ϕ maps the orthonormal basis {e−2π inw}n∈Z onto {ϕ(t − n)}n∈Z, and it satisfies the
shifting property TV 2

ϕ
(e−2π inxF) = (TV 2

ϕ
F)(t − n) for F ∈ L2(0, 1), n ∈ Z. Similar

results can be obtained if we consider a unitary operator U in an abstract Hilbert
space instead of the shift operator in L2(R) (see [11, 12, 27]).

In this paper we will consider an extension of the previous generalized sampling
formula, (11.3), to the realm of an abstract complex separable Hilbert spaceH whose
rays represent the pure states of a quantum system. The notion of U -invariant sub-
spaces will be extracted from a situation which is common in physical systems and
that corresponds to the presence of a group represented unitarily on the state space
of the system. That is, we will consider a group G and a unitary representation
U : G → U(H). Hence, the main notion that will be used henceforth will be that of
subspaces invariant under the representation of the group G, i.e., closed subspaces
W ⊂ H such that U (g)W ⊂ W for all g ∈ G. Clearly the notion of U -invariant
subspace corresponds to the choice of the Abelian group of integers Z and the uni-
tary representation provided byU (n) = Un whereU is a given unitary operator. The
theory developed inwhat follows can also be considered as a non-commutative exten-
sion of the standard classical sampling theory once we restrict ourselves to Hilbert
spaces which are Hilbert spaces of functions defined on a suitable measure space.
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Only finite groups G will be discussed here, both for simplicity of exposition and
because many relevant physical systems exhibit them in a natural way as symmetry
groups: from chemistry and molecular physics [6, 21, 31], to condensed matter
physics [10]. It is worth to point it out that it is not necessary that the group G would
be a symmetry group of the system. Actually, if the group is a symmetry group, we
will get and additional information on the form of a sampling formula for the time-
evolution of the given state, however, in order to construct the sampling expansions
exhibited below, is unnecessary.

The use of frames, finite under the circumstances, will be natural within this con-
text. The auxiliary space used in the theorywill be the space of square integrable func-
tions in the group, that in this context agrees with the group algebra of the group G.

The first part of the paper, Sect. 11.2, will be devoted to establish the mathemat-
ical setting of the problem, to discuss the main ideas used later on, like the notion
frames. and to introduce the main notion of generalized samples and their properties.
In Sect. 11.3 the main theorem stating the sampling formula for a family of states
of quantum systems supporting an unitary representation of a finite group will be
established. Finally, in Sect. 11.4 some illustrative examples will be discussed, in
particular the simple cases of cyclic and dihedral groups which are fundamental in
the applications of the theory.

11.2 The Mathematical Setting

Let G be a finite (not necessarily commutative) group with identity element e; we
denote its order as |G|. Let also g ∈ G �→ U (g) ∈ U(H) be a unitary representation
of aG in a complex separableHilbert spaceH , i.e., a homomorphism from the groups
G into the group U(H) of unitary operators on H . Notice that because the group
G is finite any unitary representation is completely reducible into finite dimensional
irreducible components. However, for reasons that will be clear along the text, it will
be better to decompose the Hilbert space H in cyclic invariant subspaces, that is,
invariant subspacesW possessing a cyclic vector |a〉, henceW = span{U (g)|a〉 | g ∈
G}: Notice that becauseG is finite the cyclic vector spacesHa are finite-dimensional.
We will denote such space by Ha and it is clear that H can be decomposed as a
countable direct sum of mutually orthogonal such subspacesH = ⊕∞

n=1 Hn,Hn =
Han , for a family of vectors an ∈ H . Consequently the problem of sampling a given
state |x〉 ∈ H is reduced to the problem of sampling the components |xn〉 ∈ Han such
that |x〉 = ∑

n |xn〉.
So, from now on, we will consider a fixed vector |a〉 ∈ H and the subspace Ha

of H spanned by U (g)|a〉, g ∈ G. Sometimes, for convenience, the vector U (g)|a〉
will be denoted either as |ga〉 or |ag〉. In case the set {|ga〉 | g ∈ G} is linearly
independent in H , each |x〉 ∈ Ha can be expressed as the unique expansion |x〉 =∑

g∈G αg U (g)|a〉, with αg ∈ C, in which case we will say that the representation
U is faithful. Notice that if we denote by Ua the restriction of the action of G to
the subspaceHa, the subset G0 = {g ∈ G | Ua(g)|x〉 = |x〉,∀|x〉 ∈ Ha} is a normal



11 Towards a Quantum Sampling Theory: The Case of Finite Groups 209

subgroup of G and the quotient group G/G0 acts faithfully in Ha, i.e., there is a
natural unitary representation Ũ defined on G/G0 as Ũ (gG0)|a〉 = U (g)|a〉, such
that the family of vectors Ũ (gG0)|a〉 is linearly independent. Thus, in what follows,
we will assume that the unitary representation of the group G on the subspace H is
faithful.

There is a close relationship between the (finite) sequence |ag〉 = U (g)|a〉 and
the so-called stationary sequences (see Kolmogorov [23]). We say that the sequence
{|xg〉 : g ∈ G} inH is (left) G-stationary if:

〈xg|xg′ 〉H = 〈xhg|xhg′ 〉H , ∀g, g′, h ∈ G .

Then it is easy to deduce, provided that the vectors |xg〉 are linearly independent,
that there exists a unitary representationU (g) of G and an |a〉 = |xe〉 ∈ H such that
|xg〉 = U (g)|a〉, g ∈ G. Thus we define the auto-covariance of the finite sequence{
U (g)|a〉 = |ga〉}g∈G as Ra(g) := 〈a|ga〉H , g ∈ G. Similarly, we can define the

cross-covariance between the finite sequences
{
U (g)|a〉}

g∈G and
{
U (g)|b〉}

g∈G
where |a〉, |b〉 ∈ H as

Ra,b(g) := 〈a|gb〉H , g ∈ G .

Note that Ra,b(g) = Rb,a(g−1) for |a〉, |b〉 ∈ H and g ∈ G.

Proposition 1 Let Ra : G → C denote the function defined by the auto-covariance
of the sequence U (g)|a〉, g ∈ G. Then the function Ra is of nonnegative type. More-
over the function Ra will be positive definite iff the representation U is faithful or,
equivalently, ifRa denotes the |G| × |G| square matrix (

Ra(h−1g)
)
(h,g)∈G×G, the set

of vectors
{
U (g)|a〉 : g ∈ G

}
is linearly independent inH if and only if detRa �= 0.

Proof A function ϕ : G → C is said to be of nonnegative type if for any finite
family gi, i = 1, . . . ,N of group elements and complex numbers ζi, it is verified that∑N

i,j=1 ζ̄iζjϕ(g−1
i gj) ≥ 0. Hence we get that

N∑

i,j=1

ζ̄iζjRa(g
−1
i gj) =

(
N∑

i=1

ζ̄i〈gia|
)⎛

⎝
N∑

j=1

ζj|gja〉
⎞

⎠ ≥ 0 .

Then notice that the function Ra will be positive iff
∑N

j=1 ζj|gja〉 �= 0 for all ζi.
Equivalently, if detRa = 0 then there exists a vector λ = (λg)g∈G ∈ C

|G| such
that λ �= 0 and Raλ = 0. Thus

∑
g∈G λg|ga〉 is orthogonal to |ga〉 for all g ∈ G so

that
∑

g λg |ga〉 = 0. Conversely, if
∑

g∈G λg |ga〉 = 0 for some λ �= 0 then the inner
product in the above expression with each |ha〉, h ∈ G, yields Raλ = 0. �

The natural isomorphism T G
a

Consider the group algebra C[G], that is, the (finite dimensional) complex linear
space generated by the elements of the group G. Thus C[G] has dimension |G| and



210 A. G. García et al.

its elements can be identified with the space of functions α : G → C, g �→ α(g); in
brief α = (

α(g)
)
g∈G . In the case we are dealing here of finite groups, such functions

are all obviously integrable and square integrable, hence it can be identified with
L2(G) that endowed with its natural inner product 〈α | β〉 becomes a Hilbert space
isomorphic to C

|G|.
The Hilbert space L2(G) supports a natural unitary representations of G called

the left regular representation Ls, s ∈ G, defined by (similarly on the right):

Lsα(g) = α(s−1g) for s, g ∈ G .

Next we define the following isomorphism T G
a (corresponding to the isomorphism

TV used in classical sampling theory discussed in (i) in the introduction) between
L2(G) and Ha:

T G
a : L2(G) −→ Ha

α �−→ |x〉 =
∑

g∈G
α(g)U (g)|a〉 . (11.4)

Notice that T G
a is an isomorphism because of the assumption that the representation

of G on Ha is faithful. In what follows, if there is no risk of confussion, we will
simply denote it by T .

This isomorphism T has the following shifting property with respect to the left
regular representation Ls:

Proposition 2 For any s ∈ G and α ∈ L2(G) we have that

T (
Lsα

) = U (s)T (α) (11.5)

Proof Indeed, denoting g′ = s−1g we have

T (
Lsα

) =
∑

g∈G
α(s−1g)U (g)|a〉 =

∑

g′∈G
α(g′)U (sg′)|a〉 (11.6)

=
∑

g′∈G
α(g′)U (s)U (g′)|a〉 = U (s)T (α) (11.7)

�

Notice that the shifting property (11.5) is just the alluded shifting property in the
introduction which is satisfied by the isomorphism TV .

An expression for the generalized samples

For our sampling purposes we consider an Abelian subgroupK ofG (not necessarily
normal) such that it possesses a complement H , i.e., H is a subgroup of G such that
KH = G andK ∩ H = {e} (in particular,K is a transversal ofH ). Notice that in such
case both coset spaces G/H and K\G are bijective to K and H respectively (though
not isomorphic as groups). Any group element g ∈ G can be factorized uniquely as
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g = kh with k ∈ K and h ∈ H . Then, to any coset gH we may associate the element
k ∈ H such that g = kh. This application is well defined because if g′H = gH , then
g′ = gh′, for some h′ ∈ H , hence the factorization of g′ becomes g′ = k(hh′).

In case that K is a normal subgroup, the Schur-Zassenhaus theorem gives us a
sufficient condition for the existence of a complement of K in G. Namely, if K is an
Abelian normal subgroup ofG such that |K | and |G/K | are coprime then there exists
a complement H of K in G. For more details see, for instance, [20, p. 76]. In such
case the group G is the semidirect product of K and H , and denoted as G = K � H .
Moreover if G is the semidirect product of the Abelian subgroup K (not necessarily
normal) and the normal subgroup H , i.e., G = H � K , then G = HK , K ∩ H = {e}
and H is a complement of K . Notice that in such case the natural identification
K ∼= G/H is an actual group isomorphism. This is a situation which is commonly
found in applications to specific physical systems with the group G a kynematical
group.

Because of the canonical identification discussed above between G/H and K , we
can choose an element of K associated to any coset of the quotient set G/H . Thus,
denoting � := |K | = |G|/|H |, in case K = {

k0 = e, k1, . . . , k�−1
}
, we can describe

the quotient set G/H as:

G/H = {
H , k1H , . . . , k�−1H

}
.

From now on we write the group G as (for any fixed way of writing the elements
of H )

G =
�−1⋃

j=0

k−1
j H .

Fixed N elements bj ∈ H , j = 1, 2, . . . ,N , for each |x〉 = ∑
s∈G αs U (s)|a〉 ∈ Ha

we define its generalized samples by

Ljx(kn) := 〈
U (kn)bj | x〉H , n = 0, 1, . . . , � − 1 and j = 1, 2, . . . ,N . (11.8)

We will refer to each Lj as a Lj-system acting on Ha, j = 1, 2, . . . ,N .
Notice that the expression for the generalized samples (11.8) is an straightforward

generalization of the convolution of the sampled vector |x〉 with the vectors |bj〉.
Besides, to recover any |x〉 ∈ Ha we need at least |G| samples; if we are sampling

at K , we will need at least N Lj-systems such that N� ≥ |G| = �|H |, i.e., N ≥ |H |.
As it was discussed in the introduction, the main goal of this paper is to recover

any state vector |x〉 ∈ Ha by means of its generalized samples (11.8) and sampling
formulas taking care of the unitary structure of Ha. To this end, we first obtain an
alternative expression for the generalized sample Ljx(kn) with n = 0, 1, . . . , � − 1.
Namely,
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Ljx(kn) = 〈
U (kn)bj | x〉H =

〈
U (kn)bj | ∑

s∈G αs U (s)a
〉

H
= ∑

s∈G αs
〈
U (kn)bj | U (s)a

〉
H = 〈

Gj,kn | α
〉
L2(G)

, (11.9)

whereα = (αs)s∈G andGj,kn = (〈U (kn)bj | U (g)a〉)g∈G = 〈(k−1
n g)a | bj〉g∈G belong

to L2(G).
The vectors Gj,kn ∈ L2(G), j = 1, 2, . . . ,N , n = 0, 1, . . . , � − 1, can be

expressed, in terms of the cross-covariances Rbj,a, as

Gj,kn = (
Rbj,a(k

−1
n s)

)
s∈G . (11.10)

Having inmind expression (11.9) for the samples and the isomorphismT G
a defined

in (11.4) we deduce the following result (see also the finite frame theory in [7]):

Proposition 3 Any |x〉 ∈ Ha can be recovered from its samples
{Ljx(kn)

}
, j =

1, 2, . . . ,N, n = 0, 1, . . . , � − 1 if and only if the set of vectors {Gj,kn}, j = 1, 2,
. . . ,N, n = 0, 1, . . . , � − 1, in L2(G) form a frame (a spanning set) for L2(G).

Equivalently, the |G| × N� matrix

⎛

⎜⎜⎝

...
...

...
...

...
...

...
...

...
...

G1,k0 · · · G1,k�−1 G2,k0 · · · G2,k�−1 · · · GN ,k0 · · · GN ,k�−1

...
...

...
...

...
...

...
...

...
...

⎞

⎟⎟⎠ (11.11)

has rank |G|. Hence,we have that |G| ≤ N�, that is, the number of neededLj-systems
is necessarily N ≥ |H |. The vectors Gj,kn can be written as column matrices as

Gj,kn =
(
Rbj,a(k

−1
n k−1

0 H ),Rbj, a(k
−1
n k−1

1 H ), . . . ,Rbj, a(k
−1
n k−1

�−1H )
)�

where kn ∈ K and Rbj,a(k
−1
n k−1

p H ) is given by

Rbj,a(k
−1
n k−1

p H ) =
(
Rbj,a(k

−1
n gp1),Rbj,a(k

−1
n gp2), . . . ,Rbj,a(k

−1
n gp|H |)

)

being k−1
p H = {gp1, . . . , gp|H | } with p = 0, 1, . . . , � − 1.

For each j = 1, 2, . . . ,N let Rbj,a be the � × |G| matrix

Rbj,a =

⎛

⎜⎜⎜⎝

Rbj,a(k
−1
0 k−1

0 H ) Rbj,a(k
−1
0 k−1

1 H ) . . . Rbj,a(k
−1
0 k−1

�−1H )

Rbj,a(k
−1
1 k−1

0 H ) Rbj,a(k
−1
1 k−1

1 H ) . . . Rbj,a(k
−1
1 k−1

�−1H )
...

... · · · ...

Rbj,a(k
−1
�−1k

−1
0 H ) Rbj,a(k

−1
�−1k

−1
1 H ) . . . Rbj,a(k

−1
�−1k

−1
�−1H )

⎞

⎟⎟⎟⎠
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Since K is an Abelian subgroup of G the cosets k−1
n k−1

p H and k−1
p k−1

n H coincide.
As a consequence, Rbj,a is the block symmetric matrix

Rbj,a =

⎛

⎜⎜⎜⎝

Rbj,a(k
−1
0 k−1

0 H ) Rbj,a(k
−1
1 k−1

0 H ) . . . Rbj,a(k
−1
�−1k

−1
0 H )

Rbj,a(k
−1
0 k−1

1 H ) Rbj,a(k
−1
1 k−1

1 H ) . . . Rbj,a(k
−1
�−1k

−1
1 H )

...
... · · · ...

Rbj,a(k
−1
0 k−1

�−1H ) Rbj,a(k
−1
1 k−1

�−1H ) . . . Rbj,a(k
−1
�−1k

−1
�−1H )

⎞

⎟⎟⎟⎠ (11.12)

The matrix given in (11.11) can be written as
(
R∗

b1,a
R∗

b2,a
. . . R∗

bN ,a

)
, where the

symbol ∗ denotes the transpose conjugate matrix. Thus, Proposition 3 can be restated
in terms of the N� × |G| matrix of cross-covariances Rb,a defined by

Rb,a :=

⎛

⎜⎜⎜⎝

Rb1,a

Rb2,a
...

RbN ,a

⎞

⎟⎟⎟⎠ . (11.13)

Corollary 1 Any |x〉 ∈ Ha can be recovered from its samples
{Ljx(kn)

}
, j =

1, 2, . . . ,N, n = 0, 1, . . . , � − 1 if and only rankRb,a = |G|.
Besides, (11.9) can be expressed, for any |x〉 = ∑

s∈G αs U (s)|a〉 inHa, as

⎛

⎜⎜⎜⎝

Ljx(k0)
Ljx(k1)

...

Ljx(k�−1)

⎞

⎟⎟⎟⎠ = Rbj,a α

where α = (αs)s∈G . As a consequence we deduce the samples expression:

Proposition 4 For any |x〉 = ∑
s∈G αs U (s)|a〉 inHa consider its samples vector

Lsampx = (L1x(k0) . . .L1x(k�−1) . . .LNx(k0) . . .LNx(k�−1)
)�

. (11.14)

Then, the matrix relationship
Lsampx = Ra,b α (11.15)

holds, where α = (αs)s∈G and Rb,a is the N� × |G| matrix of cross-covariances
defined in (11.13).

Assuming that {Gj,kn}, j = 1, 2, . . . ,N , n = 0, 1, . . . , � − 1, is a frame for L2(G)

we have that the rank of the matrix Rb,a is |G|. Thus the Moore-Penrose pseudoin-
verse of Rb,a is the |G| × N� matrix R+

b,a = [R∗
b,aRb,a]−1R∗

b,a (see [26]). Writing
the columns of R+

b,a as
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R+
b,a =

⎛

⎜⎜⎝

...
...

...
...

...
...

...
...

...
...

R+
1,k0

· · · R+
1,k�−1

R+
2,k0

· · · R+
2,k�−1

· · · R+
N ,k0

· · · R+
N ,k�−1

...
...

...
...

...
...

...
...

...
...

⎞

⎟⎟⎠

from (11.15) we obtain

α = R+
b,a Lsampx =

N∑

j=1

�−1∑

n=0

Ljx(kn)R+
j,kn

=
N∑

j=1

�−1∑

n=0

〈Gj,kn | α〉L2(G)R
+
j,kn

(11.16)

In particular we derive that rankR+
b,a = |G| and that the columns of R+

b,a form a
dual frame of {Gj,kn}, j = 1, 2, . . . ,N , n = 0, 1, . . . , � − 1. Any other dual frame of
{Gj,kn}, j = 1, 2, . . . ,N , n = 0, 1, . . . , � − 1, in L2(G) is given by the columns of
any left-inverse matrixM of the matrixRb,a. All these matrices are expressed as (see
[26])

M = R+
b,a + U[IN� − Rb,aR+

b,a] (11.17)

where U denotes any arbitrary |G| × N� matrix.

11.3 The Sampling Result

Let |x〉 = ∑
s∈G αs U (s)|a〉 a vector of Ha; applying the isomorphism (11.4) in

(11.16) we have

|x〉 = T (α) =
N∑

j=1

�−1∑

n=0

Ljx(kn)T (R+
j,kn

) .

Similarlywemay obtain a sampling formula like above for each left-inverse ofRb,a in
(11.17). Indeed, denoting {mj,kn}, j = 1, 2, . . . ,N , n = 0, 1, . . . , � − 1, the columns
of a left-inverse M of Rb,a, one gets

|x〉 =
N∑

j=1

�−1∑

n=0

Ljx(kn)T (mj,kn) . (11.18)

The sampling functions T (mj,kn) in (11.18) do not have, in principle, any special
structure for using the shifting property (11.5) since, in general,M does not have it. In
the next section we construct specific left-inverses of Rb,a such that their associated
sampling formulas take care of the unitary structure of Ha.
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G-compatible left-inverses

We denote by S the first |H | rows of any left-inverse of the matrix Rb,a taken from
(11.17); i.e,

SRb,a = (
I|H | O|H |×(|G|−|H |)

)
. (11.19)

Having in mind the structure of Rb,a we write the |H | × N� matrix S as

S = (
S1 S2 . . . SN

)

where each blockSj is a |H | × �matrix denoted bySj = (
S0
j S

1
j . . . S�−1

j

)
where Sn

j ∈
C

|H | for each n = 0, 1, . . . , � − 1 and j = 1, 2, . . . ,N . From (11.12) and (11.19) we
have:

N∑

j=1

�−1∑

n=0

Sn
j Rbj,a(k

−1
0 k−1

n H ) = I|H |

N∑

j=1

�−1∑

n=0

Sn
j Rbj,a(k

−1
k k−1

n H ) = O|H |, k = 1, 2, . . . , � − 1 ,

or equivalently

N∑

j=1

�−1∑

n=0

Sn
j Rbj,a(k

−1
n H ) = I|H | (11.20)

N∑

j=1

�−1∑

n=0

Sn
j Rbj,a(k

−1
n k−1

k H ) = O|H |, k = 1, 2, . . . , � − 1 . (11.21)

Now, we form the |G| × N� matrix S̃ = (̃
S1 S̃2, . . . S̃N

)
. Each |G| × � block S̃j,

j = 1, 2, . . . ,N , is formed from the columns of Sj in the following manner:

S̃j :=

⎛

⎜⎜⎜⎜⎝

S0
j S1

j · · · S�−1
j

S0,1
j S1,1

j · · · S�−1,1
j

...
... · · · ...

S0,�−1
j S1,�−1

j · · · S�−1,�−1
j

⎞

⎟⎟⎟⎟⎠

where, for i = 1, 2, . . . , � − 1 and n, k = 0, 1, . . . , � − 1, we set

Sn,i
j := Sk

j whenever k−1
n k−1

i = k−1
k (or, equivalently, ki kn = kk) . (11.22)
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Lemma 1 The above |G| × N� matrix S̃ is a left-inverse of Rb,a, i.e, S̃ Rb,a = I|G|.

Proof From (11.20) and (11.21), for each i = 1, 2, . . . , � − 1, we have

N∑

j=1

�−1∑

n=0

Sn,i
j Rbj,a(k

−1
n k−1

i H ) =
N∑

j=1

�−1∑

k=0

Sk
j Rbj,a(k

−1
k H ) = I|H |

and

N∑

j=1

�−1∑

n=0

Sn,i
j Rbj,a(k

−1
n k−1

p H ) =
N∑

j=1

�−1∑

k=0

Sk
j Rbj,a(k

−1
n k−1

p H ) = O|H |, p �= i .

As a consequence, we deduce that S̃ Rb,a = I|G|. �

It is worth to mention that, in particular, the Moore-Penrose pseudo-inverse R+
b,a

is a G-compatible left-inverse of Rb,a; see [17] for the details.
Next we denote the columns of S̃ as

S̃ =

⎛

⎜⎜⎝

... · · · ...
... · · · ...

...
... · · · ...

S̃1,0 · · · S̃1,�−1 S̃2,0 · · · S̃2,�−1 · · · S̃N ,0 · · · S̃N ,�−1
... · · · ...

... · · · ...
...

... · · · ...

⎞

⎟⎟⎠ (11.23)

Using the left-inverse S̃ of Rb,a instead of R+
b,a in (11.16), for each |x〉 = ∑

s∈G αs

U (s)|a〉 inHa we obtain

α = S̃Lsamp =
N∑

j=1

�−1∑

n=0

Ljx(kn) S̃j,n .

Therefore,

|x〉 = T (α) =
N∑

j=1

�−1∑

n=0

Ljx(kn)T (̃Sj,n) .

On the other hand, the columns S̃j,n, j = 1, 2, . . . ,N and n = 0, 1, . . . , � − 1, as
vectors of L2(G) satisfy, by construction, see (11.22), the crucial property (for our
sampling purposes)

S̃j,n = Lkn S̃j,0, j = 1, 2, . . . ,N , n = 0, 1, . . . , � − 1 .
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Hence, the shifting property (11.5) gives

|x〉 =
N∑

j=1

�−1∑

n=0

Ljx(kn)T (̃Sj,n) =
N∑

j=1

�−1∑

n=0

Ljx(kn)T (Lkn S̃j,0)

=
N∑

j=1

�−1∑

n=0

Ljx(kn)U (kn)T (̃Sj,0) .

Therefore, we have proved that, for any |x〉 ∈ Ha the sampling expansion

|x〉 =
N∑

j=1

�−1∑

n=0

Ljx(kn)U (kn)|cj〉 (11.24)

holds, where |cj〉 = T (̃Sj,0) ∈ Ha, j = 1, 2, . . . ,N . Notice that we have obtained a
sampling result of the desired form, (11.3), where the desired sampling vectors are
given by |Cn, j〉 = U (kn)|cj〉 and the generalized samples are obtained by convolution
on L2(G) with the matrix of cross-covariances. In fact, collecting all the pieces we
have obtained until now we have the following result:

Theorem 1 Given the N� × |G| matrixRb,a defined in (11.13), the following state-
ments are equivalent:

1. rankRb,a = |G|
2. There exists a |H | × N� matrix S such that

SRb,a = (
I|H | O|H |×(|G|−|H |)

)

3. There exist N vectors |cj〉 ∈ Ha, j = 1, 2, . . . ,N, such that {U (kn)|cj〉}, j =
1, 2, . . . ,N, n = 0, 1, . . . , � − 1 is a frame for Ha, and for any |x〉 ∈ Ha the
expansion

|x〉 =
N∑

j=1

�−1∑

n=0

Ljx(kn)U (kn)|cj〉

holds.
4. There exists a frame {|Cj,n〉}, j = 1, 2, . . . ,N, n = 0, 1, . . . , � − 1, in Ha such

that, for each |x〉 ∈ Ha the expansion

|x〉 =
N∑

j=1

�−1∑

n=0

Ljx(kn) |Cj,n〉

holds.
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Proof That condition (1) implies condition (2) and condition (2) implies condition (3)
have been proved above. Obviously, condition (3) implies condition (4): take |Cj,n〉 =
U (kn)|cj〉 for j = 1, 2, . . . ,N and n = 0, 1, . . . , � − 1. Finally, as a consequence of
Corollary 1, condition (4) implies condition (1). �

For the particular case where N = |H | we obtain:
Corollary 2 Assume that N = |H | and consider the |G| × |G| matrix of cross-
covariances Rb,a defined in (11.13). The following statements are equivalent:

1. The matrix Rb,a is invertible.
2. There exist |H | unique elements |cj〉 ∈ Ha, j = 1, 2, . . . , |H |, such that the

sequence
{
U (kn)|cj〉

}
, j = 1, 2, . . . , |H |, n = 0, 1, . . . , � − 1 is a basis for Ha,

and the expansion of any |x〉 ∈ Ha with respect to this basis is

|x〉 =
|H |∑

j=1

�−1∑

n=0

Ljx(kn)U (kn)|cj〉 .

In this case the interpolation property Ljcj′(kn) = δj,j′ δn,0 holds, whenever n =
0, 1, . . . , � − 1 and j, j′ = 1, 2, . . . , |H |.
Proof Notice that the inverse matrix R−1

b,a has necessarily the structure of the matrix
S̃ in (11.23). The uniqueness of the expansion with respect to a basis gives the
interpolation property. �

Sampling the dynamics

So far, the groupG has played no dynamical role, that is, if the dynamical evolution of
the state |x〉 is given by the one-parameter group of unitary operatorUt = exp(−itH)

defined by the Hamiltonian operatorH, no assumption on the commutation relations
of the operators U (g) and H is made. However, if we assume that G is a symmetry
group of the system, that is [U (g),H] = 0 for all g ∈ G, then the evolution x(t) of
the initial state takes a particularly simple form. Actually |x(t)〉 = Ut|x〉, then using
(11.24), we get:

|x(t)〉 = Ut|x〉 =
N∑

j=1

�−1∑

n=0

Ljx(kn)U (kn)Ut|cj〉 =
N∑

j=1

�−1∑

n=0

Ljx(kn)U (kn)|cj(t)〉 ,

where |cj(t)〉 denotes the dynamical evolution of the states |cj〉, j = 1, 2, . . . ,N . Thus
the evolved state |x(t)〉 can be recovered from the initial samples and the evolved
states |cj(t)〉, j = 1, 2, . . . ,N .



11 Towards a Quantum Sampling Theory: The Case of Finite Groups 219

11.4 Some Simple Examples

We will end up the discussion by illustrating the obtained results with two simple
examples: the cyclic group ZN and the dihedral group D3, or the C3v group in the
molecular symmetry notation, which is the symmetry group of molecules such as
ammonia or phosphorus oxycloride.

The cyclic group case

This case corresponds to that of a unitary operator U : H → H in a Hilbert space
H such that for some |a〉 ∈ H there exists M ∈ N satisfying UM |a〉 = |a〉 and the
set

{|a〉,U |a〉,U 2|a〉, . . . ,UM−1|a〉} is linearly independent inH .
If we consider a positive integer r such that r divides M and denote � = M /r,

the goal is to obtain finite frames in the subspace Ha = {∑M−1
k=0 αkUka : αk ∈ C

}

ofH , having the form
{
Urn|cj〉

}
, j = 1, 2, . . . ,N , n = 0, 1, . . . , � − 1 where |cj〉 ∈

Ha, j = 1, 2, . . . ,N , such that any |x〉 ∈ Ha can be recovered from the samples{Ljx(rn) := 〈Urnbj | x〉H
}
, j = 1, 2, . . . ,N , n = 0, 1, . . . , � − 1, by means of the

sampling expansion

|x〉 =
N∑

j=1

�−1∑

n=0

Ljx(rn)U
rn|cj〉 ,

which takes care of the U -structure of Ha. In this example we are considering the
cyclic group G := ZM , the unitary representation n �→ U (n) := Un and its cyclid
subgroup H := Zr . This particular case has been deeply studied in [13, 15].

A practical example taken from Signal Processing consists of the periodic exten-
sion of finite signals. Indeed, consider the space �2M (Z) of M -periodic signals with
inner product 〈x | y〉�2M = ∑M−1

m=0 x(m) y(m). If we take, for instance, theM periodic
signal a := (1, 0, . . . , 0) and the cyclid shift operator

U : x = {
x(m)

} �−→ Ux := {
x(m − 1)

}

in �2M (Z), we trivially obtain that UM a = a and Ha = �2M (Z).
FixedN signalsbj ∈ �2M , j = 1, 2, . . . ,N , each sample of x ∈ �2M is obtained from

theM -periodic convolution

Ljx(rn) := 〈Urnbj | x〉�2N =
M−1∑

m=0

x(m)bj(m − rn) = (
x ∗ hj

)
(rn) , n = 0, 1, . . . , � ,

where hj(m) = bj(−m), m = 0, 1, . . . ,M − 1.
As the cross-covariance Rbj,a(m) = 〈bj | Uma〉�2N = bj(m), each � × M block

Rbj,a, j = 1, 2, . . . ,N , of the N� × M matrix Rb,a in (11.13) takes the form



220 A. G. García et al.

Rbj,a =

⎛

⎜⎜⎜⎝

bj(0) bj(1) · · · bj(M − 1)
bj(M − r) bj(M − r + 1) · · · bj(2M − r − 1)

...
...

. . .
...

bj(M − r(� − 1)) bj(M − r(� − 1) + 1) · · · bj(2M − 1 − r(� − 1))

⎞

⎟⎟⎟⎠

where the sampling period r dividesM and � = M /r. In case the rank of Rb,a isM ,
which implies N ≥ r convolution systems, from Theorem 1 we obtain in �2M (Z) a
sampling formula as

x(m) =
N∑

j=1

�−1∑

n=0

Ljx(rn) cj(m − rn) =
N∑

j=1

�−1∑

n=0

(
x ∗ hj

)
(rn) cj(m − rn) ,

where m = 0, 1, . . . ,M − 1. The sampling sequences in �2M (Z) are cj = T G
a

(̃
Sj,0

)
,

j = 1, 2, . . . , s, where S̃j,0 are the corresponding columns of any structured left-
inverse S̃ of Rb,a as in (11.23). Note that cj is nothing but the M -periodic sequence
in �2M (Z) derived from the column S̃j,0 ∈ C

M of S̃.

The dihedral group case

Let D3 be the dihedral group D3 = {
e, g, g2, k, kg, kg2

}
of the symmetries of the

equilateral triangle, i.e., g is a rotation of 2π/3 and k is the axial reflection. They
satisfies the relationships g3 = k2 = e and kg = g2k. Consider its normal subgroup
H = {

e, g, g2
}
; as a consequence, the quotient groupD3/H = {[e], [k]}, is a cyclic

group of order 2, and K = {e, k}.
Let s ∈ D3 �→ U (s) ∈ U(H) be a unitary representation of D3 in a Hilbert space

H . Fixed |a〉 ∈ H we considerHa the subspace ofH spanned by
{
U (s)a : s ∈ D3

}
.

In case this set is linearly independent inH it canbedescribed as the unique expansion
|x〉 = ∑

s∈D3
αs U (s)|a〉, with αs ∈ C.

Assume that N Lj-systems, j = 1, 2, . . . ,N , are defined onHa. In this case, each
2 × 6 block Rbj,a of the 2N × 6 matrix Rb,a in (11.13) is given by

Rbj,a =
(
Rbj,a(e) Rbj,a(g) Rbj,a(g

2) Rbj,a(k) Rbj,a(kg) Rbj,a(kg
2)

Rbj,a(k) Rbj,a(kg) Rbj,a(kg
2) Rbj,a(e) Rbj,a(g) Rbj,a(g

2)

)

If rankRb,a = 6, then, according to Theorem 1 there exist N vectors |cj〉 ∈ Ha,
j = 1, 2, . . . ,N , such that the sequence

{
U (s)|cj〉

}
, j = 1, 2, . . . ,N , s ∈ {e, k} is a

frame forHa and, for any |x〉 ∈ Ha the sampling expansion

|x〉 =
N∑

j=1

∑

s∈{e,k}
Ljx(s)U (s)|cj〉 ,
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holds. Moreover, |cj〉 = T D3
a (̃Sj,e), j = 1, 2, . . . ,N , where S̃j,e denotes the corre-

sponding column of any 6 × 2N left-inverse S̃ of Rb,a as in (11.23). A similar result
applies for the general dihedral group Dm.

11.5 Discussion and Conclusions

A sampling expansion for a vector state |x〉 in an invariant subspaceHa of a Hilbert
space H with respect a unitary representation U (g) of a given finite group G has
been obtained. The generalized samples are obtained by convolution in the auxiliary
Hilbert space L2(G), of the the fundamental cross-covariance matrix Rb,a of the
finite sequence of vectors U (kn)|bj〉 with the original state. The reconstruction is
achieved as a linear superposition of a finite frame

{|Cj,n〉
}
with these coefficients.

The elements |Cj,n〉 of the frame are compatible with the unitary structure of the
problem in the sense that they have the form |Cj,n〉 = U (kn)|cj〉 for some elements |cj〉
inHa and they are constructed in a natural way from a left-inverse of the fundamental
cross-covariance matrix.

The sampling expansions obtainedwould allow for a reconstruction of the original
state, as well as its unitary evolution if the group G is a symmetry of the dynamics,
using frames adapted to the structure of the problem, that is, a family of states which,
in general, do not form an orthonormal basis of the system and prepared indepen-
dently of the initial state by using the geometry of the group G. The determination
of the samples by means of generalized measurements on the auxiliary Hilbert space
L2(G) and the reconstruction of the unitary evolution will be discussed in subsequent
works.

The use of frames adapted to the geometry of the groupG and anAbelian subgroup
H as discussed in this paper, could be relevant in solving such relevant problem as
Kitaev’s Abelian stabilizer problem or designing faster phase estimation quantum
algorithms [22].

Molecular symmetry theory will constitute another obvious applications of the
theory as it would provide a newway of representingmolecular states by using frames
and generalized samples. Such issues will be considered in future publications.

The results obtained in this paper for finite groups have natural extensions to
compact and type I discrete groups. Other groups of physical relevance like the
Heisenberg-Weyl group and other nilpotent and solvable groups will be discussed
elsewhere.
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Chapter 12
On the Kinematics of the Last Wigner
Particle

José M. Gracia-Bondía and Joseph C. Várilly

Abstract Wigner’s particle classification provides for ‘continuous spin’ representa-
tions of the Poincaré group, corresponding to a class of (as yet unobserved) massless
particles. Rather than building their induced realizations by use of “Wigner rota-
tions” in the textbooks’ way, here we exhibit a scalar-like first-quantized form of
those (bosonic) Wigner particles directly, by combining wave equations proposed by
Wigner long ago with a recent prequantized treatment employing Poisson structures.

12.1 Introduction

By the lastWigner particle (WP) here is meant the last case inWigner’s classification
of unirreps of the Poincaré group [1]: massless particles whose second Casimir has a
nonzero value. More often, they are referred to as continuous spin particles (CSP) –
somewhat of a misnomer. Though routinely dismissed as “unobserved” in standard
textbook treatments, the possible existence and properties of such particles are of
continued interest [2]; after pioneering work by Schuster and Toro [3–5], several
recent studies [6–10] have appeared. Closer to the spirit of this paper is the con-
struction by Rehren [11] stemming from his own work with Mund and Schroer –
see [12] and references therein – of a string-local quantum field for such a particle,
as a “Pauli–Lubański limit” of massive, string-local fields. At an opposite end, math-
ematically speaking, our own construction [13] of a “classical elementary system”
for the WP foreshadows its quantum kinematics.

Our goal here is to review the first-quantized description of the (bosonic) WP:
this is the relevant approach for certain applications that do not require a full-blown
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quantum field formalism. In principle, such a description is already available, by
means of little-group techniques [14, 15]. However, one can attain a simpler-looking
scalar-like version by starting directly from the wave equations. Among our purposes
here is to delineate this version, less cumbersome than the standard approach.

The plan of the article is as follows. In Sect. 12.2 we recall the theory of the second
Casimir associated to the Poincaré group, borrowing a method and notation going
back to work by Schwinger [16]. We also bring in a quite instrumental result on
the Wigner rotation for massless particles [17]. Section12.3 is the core of the paper.
There we introduce an appropriate set of states for theWP, and we show the invariant
nature of their associated wavefunctions, their equations of motion, and the existence
of an invariant scalar product. In Sect. 12.4 we exhibit the causal propagator for the
boson WP. Section12.5 deals briefly with the relation between the invariant and the
conventional formalisms.

In the appendices we state and develop our Poincaré-group conventions, and then
expound a relevant aspect of little-group theory that we have not found in the standard
presentations.

12.2 The Schwinger Decomposition of the Pauli–Lubański
Operator

Before coming to the (one-particle) Hilbert space for the WP, let us recall the stan-
dard basis of the Lie algebra p of the Poincaré group P↑

+ whose 10 generators
{P0, Pa, La, K a : a = 1, 2, 3} correspond respectively to time translation, space
translations, rotations and boosts – consult Appendix 1 for our notation and con-
ventions. The commutation relations for the Lorentz subgroup are as follows:

[La, Lb] = εab
c Lc, [La, K b] = εab

c K c, [K a, K b] = −εab
c Lc.

The pseudovector operator (in the enveloping algebra of p)

W ρ := J ∗ρμ Pμ = Pμ J ∗ρμ = (P · L, P0L + K × P) ≡ (W 0,W)

= (
P1 J 23 + P2 J 31 + P3 J 12, P0 J 23 + P2 J 30 + P3 J 02,

P0 J 31 + P1 J 03 + P3 J 10, P0 J 12 + P2 J 10 + P1 J 02
)

(12.1)

is referred to as the Pauli–Lubański vector. It clearly satisfies

(W P) = 0 and [Pν, W μ] = 0,

and is a vector under the action of the Lorentz group generators:

[Jμν, W τ ] = gτνW μ − gτμW ν .
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As a corollary, one obtains the identities:

[W μ, W ν] = εμν
τρW τ Pρ; and [Jμν, (W W )] = 0; (12.2)

the second one indicating that (W W ) is a Casimir operator for P↑
+. One finds also

that

(W W ) = 1
4ε

ρμντ Pμ Jντ ερκση Pκ J ση = − 1
2 Jντ J ντ P2 + Jκσ Jμσ Pκ Pμ . (12.3)

We assume in what follows that P0 > 0. By invoking expression (12.1) in the
rest frame, it becomes clear that the Casimir (W W ) for a massive particle equals
−m2S · S, where S is the spin generator. This tells us that (W W ) captures internal
angular momentum. In general W is spacelike,1 except that in the massless case it
can be parallel to P: this leads to the known fixed-helicity particles, like the photon
and graviton, for which relations (12.2) are trivial.

Here we put that case aside: the Wigner particle by definition obeys

(W W ) = −κ2 < 0.

We have seen in (12.1) that the temporal component of W is directly related to
helicity, which deserves a symbol:

H := (P · L)/P0. Therefore W 0 = H P0. (12.4)

The relation (W P) = 0 implies that the relevant part ofW is that which is transverse
to P :

T := W − W 0P/P0 = W − (W · P)P/(P0)2, so that W = H P + T . (12.5)

Notice that T 2 = κ2. We call W = H P + T the Schwinger decomposition of (the
spatial part of) the PL vector; the notation T for the part ofW transverse to P follows
[16]. Not only do the components of T commute with the momentum; they commute
with each other. This is worth a proof:

[T a, T b] = [W a, W b] − [W 0, W b]Pa/P0 − [W a, W 0]Pb/P0

= εab
cT c P0 − εb

deT d Pe Pa/P0 + εa
rs T r Ps Pb/P0

= εab
cT c P0 − (T × P)b Pa/P0 + (T × P)a Pb/P0

= εab
c
(
T c P0 + ((T × P) × P)c/P0

) = εab
c
(
T c P0 − T c(P0)2/P0

) = 0.

Schwinger writes for this: T × T = 0. Note also that

[H, K a] = T a/P0; [K a, T b] = T a Pb/P0.

1Since (W P) = 0 and (P P) ≥ 0 together imply that (W W ) ≤ 0.
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Let us introduce another spatial 3-vector, also transverse to P :

Y := (P/P0) × T .

There is a 4-vector naturally associated with Y like W with T . But we do not go into
that. Note the commutator relation

[H, T a] = [W 0, T a]/P0 = εa
bcT b Pc/P0 = T × Pa/P0 = −Y a,

which is at once accompanied by

[H, Y a] = εa
bc[H, PbT c/P0] = −εa

bc PbY c/P0

= −(P × Y)a/P0 = (P × (T × P))a(P0)−2 = T a .

At this point, following Schwinger anew, and also inspired by [18], we may
introduce a position vector commuting with H :

R = − 1
2 [K , (P0)−1]+ − (T × P)(P0)−3.

Notice that

[W 0, R] = −W ‖
P0

, so [H, R] = [W 0/P0, R] = − W ‖
(P0)2

+ W 0P/P0

(P0)2
= 0.

We remark that [P j , Rk] = −δ jk . Also, [R j , P0] = P j/P0 and [R j , (P0)−1] =
−P j/(P0)3.

We list here some commutators involving R:

[R j , Pk] = δ jk, [R j , P0] = P j (P0)−1, [W 0, R j ] = (T j − W j )(P0)−1,

[R j , H ] = 0, [R j , T k] = −T j Pk(P0)−2, [R j , Rk] = −ε
jk
l H Pl(P0)−3,

[R j , (T × P)k(P0)−2] + [(T × P) j (P0)−2, Rk] = 0. (12.6)

The sixth relation in (12.6) shows the WP to be intrinsically non-localizable. The
proofs of the above are routine; and anyway, the Poisson brackets and general results
of the thorough study of the kinematics of the WP in Kirillov’s prequantized for-
malism [13] can be largely transposed here. In particular: the commuting orthogonal
trihedron (P, T ,Y) rotates gyroscopically under boosts, this being ipso facto true for
all (restricted) Lorentz transformations. While the length of P can vary, the lengths
of T and Y are fixed at κ . The next subsection helps to understand why.
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12.2.1 The Wigner Rotation, Tamed

In the massive case there is a canonical definition for a Lorentz transformation taking
the reference momentum (m, 0) to p, as a boost Lζn with direction n (a unit vector)
and boost parameter ζ . The corresponding Wigner rotation acting2 on a 3-vector v

is found in [13, 17]:

R(Lζn, p)v = Rm,δv = v cos δ + m × v sin δ + (m · v)m(1 − cos δ),

where:

m = p × n
| p × n| ; cos δ = 1 − | p × n|2(cosh ζ − 1)

(m + p0)(m + p′0)
,

sin δ = (m + p0) sinh ζ + n · p(cosh ζ − 1)

(m + p0)(m + p′0)
| p × n|,

with the action p 	→ p′ on 4-momenta given by:

p′0 = p0 cosh ζ + n · p sinh ζ,

p′ = p + p0 n sinh ζ + (n · p)n(cosh ζ − 1).

As remarked in [17], the massless limit of sin δ is perfectly smooth:

sin δ =
(
sinh ζ

p′0 + n · p(cosh ζ − 1)

p0 p′0

)
| p × n|, (12.7)

whereas
p × p′ = [

p0 sinh ζ + n · p(cosh ζ − 1)
]
p × n;

therefore the component of p′ not along p stays in the plane perpendicular to p × n.
The sine of the angle of rotation is given by

| p × p′|
| p|| p′| = p0 sinh ζ + n · p(cosh ζ − 1)

| p|| p′| | p × n|. (12.8)

In the massive case (where p0 p′0 > | p|| p′|), this angle is generally greater than the
Wigner rotation angle δ. The key point is that this formula makes perfect sense for
m = 0, even though some of the factors in its definition do not. Namely, keeping in
mind that in the massless case p0 = | p| and p′0 = | p′|, the formula (12.8) exactly
matches formula (12.7). Which means that momentum and “spin” turn in solidarity.
Wigner graphically describes why in the massless case they must do so: “for a

2In the “active transformation” view [19, Sect. 3.3].
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particle with zero rest-mass […] if we connect any internal motion with the spin, this
is perpendicular to the velocity” [20].

12.3 The Invariant Formalism for the WP

To construct a Hilbert space H carrying a unitary irreducible representation (or
“unirrep”) U of the Poincaré group P↑

+ corresponding to a Wigner particle with
Casimir κ2, we proceed by taking a basic set of kets, labelled as

∣
∣| p|, p/| p|, t〉;

where3

P
μ | p, t〉 = P

μ
∣
∣| p|, p/| p|, t〉 = pμ

∣
∣| p|, p/| p|, t〉,

T
∣∣| p|, p/| p|, t〉 = t

∣∣| p|, p/| p|, t〉.

Here P
μ is the selfadjoint operator corresponding to the generator Pμ; T is the

3-component selfadjoint operator corresponding to Schwinger’s geometric gener-
ator T ; and t is the 3-vector of its eigenvalues. These polarization states lie on a
circle of radius κ in the plane perpendicular to p. Thus, with some abuse of nota-
tion, we can rewrite | p, θ〉 or |κ; p, θ〉 for those kets, with θ denoting their angular
degree of freedom. Note that different positive values of κ correspond to inequivalent
representations of P↑

+ .
The gyroscopic property is the key to the strange simplicity of the WP structure,

as it indicates that the corresponding wave-functions for theWPmay transform simi-
larly to spin-zero particles. Indeed, for any Lorentz transformation Λ the gyroscopic
property implies that the rotation RΛ : p/| p| 	→ p′/| p′| applies equally to t , i.e.,
t 	→ t ′ = RΛ t . This is clear if Λ is a rotation, and has been shown in [13] when Λ

is a boost; and so it is true of any Λ.

Remark 1 The little-group techniques demand the choice of a Lorentz transfor-
mation at each point of (the mantle of) the lightcone. Now, it is not possible, for
rather obvious topological reasons [21], to construct a global continuous section of
the SL(2,C)-principal bundle. Since one works mostly in the category of Hilbert
spaces, and there exist Borel sections, this is usually deemed not too serious a prob-
lem. However, it does produce some pathologies, which, according to the analysis
in [22], for ordinary massless particles of nonzero helicity at least, partially invali-
date the concept of sharp momentum states that people have been using all along.
It seems unlikely that related troubles manifest themselves for WPs in the invariant
formulation. On the other hand, the very fact that the description of one of their states
requires three angles, instead of two, makes for more singular eigenstates than for
scalar particles.

It pertains to declare the normalization of our kets. We decide for the Lorentz-
invariant expression:

3We use open-faced type for the operators onHilbert space corresponding to geometrical generators.
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〈 p, t | p′, t ′〉 = | p| δ( p − p′) δ(t − t ′), or

〈 p, θ | p′, θ ′〉 = | p| δ( p − p′) δ(θ − θ ′).

Let Φ( p, θ) := 〈 p, θ | Φ〉. An inner product for these wavefunctions is thus given
by

〈Φ | Φ〉 ∝
∫

d3 p

| p| dθ
∣
∣Φ( p, θ)

∣
∣2. (12.9)

The definition does not depend on the Lorentz frame [23]. We give an explicitly
invariant form of 〈Φ | Φ〉 in momentum space at the end of this section; and also a
formula in configuration space. In order to see them, and to better grasp the kinematics
of the WP, we introduce, following Wigner, its manifestly invariant formalism.

12.3.1 Equations of Motion

As advertised, the gyroscopic property implies that equations of motion for the WP
may be of scalar-like form. In fact, Wigner returned many times [23–25] to the
question of equations of motion for a WP. In those papers Wigner considers scalar
wave functions depending on configuration or momentum-space variables and an
extra spacelike 4-vector variable,4 transforming covariantly under the Lorentz group,
and satisfying the equations:

�xΦ(x, w) = 0; or p2 Φ(p, w) = 0, (12.10a)

(w2 + κ2)Φ(x, w) = 0; or (w2 + κ2)Φ(p, w) = 0, (12.10b)

(w ∂x )Φ(x, w) = 0; or (pw)Φ(p, w) = 0, (12.10c)
(
(∂x∂w) + 1

)
Φ(x, w) = 0; or

(
(p ∂w) + i

)
Φ(p, w) = 0. (12.10d)

The first three equations have a ready interpretation, corresponding respectively to
the Klein–Gordon equation for a massless particle, the value of the second Casimir
associated to a given WP, and mutual perpendicularity of the momentum and PL
vectors.

For the fourth equation, just note that identifying the equations of motion with
the action of the Casimir operators is a matter of principle. So let us formally take
P and W as independent variables at the same title, in a representation in which P
is diagonal, and compute from equation (12.3) with P2 = 0 the second Casimir:

4Here called w, since it will be seen to be an avatar of the PL vector.
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C2 ≡ (W W ) = (wν ∂w
ρ − wρ ∂w

ν )(wν ∂σ
w − wσ ∂ν

w) ∂ x
σ ∂ρ

x

= −κ2(∂x∂w)2 + (w ∂x )(∂x∂w) − (w ∂x )(w ∂w)(∂x∂w) − (w ∂w)�x

− (w ∂x )(w ∂w)(∂x∂w) − 4(w ∂x )(∂x∂w) + (w ∂x )
2 �w + (w ∂x )(∂w∂x )

= −κ2(∂x∂w)2 + (w ∂x )
2 �w − 2(w ∂x )(∂x∂w)(w ∂w) − (w ∂w)�x

= κ2(p ∂w)2 − (pw)2 �w + 2(pw)(p ∂w)(w ∂w) = −κ2. (12.11)

Now, since here (pw) = 0, we are left with (∂x∂w) = ∓1, which arguably completes
the Wigner equations (12.10) above.5

The weak point of the argument appears to be that the components of W do not
commute in general. But the equations defend themselves very well: the last one is
immediately integrated,

Φ( p, w − γ p) = e±iγ Φ( p, w), (12.12)

and may be interpreted as an infinitesimal gauge transformation, which, in view of
the Schwinger decomposition (12.4) and (12.5), identifies γ as the placeholder for
helicity. One recognizes that the argument w in (12.10) stands for both “spin” and
“gauge” degrees of freedom.

The Wigner system of equations is consistent; indeed, compatibility between the
third and fourth equations is guaranteed precisely by the wave equation (12.10a), and
compatibility between the second and fourth by the third equation (12.10c). That is
to say: the differential operators in the left column of (12.10) form a closed system,
since �x commutes with the other three, which have the nontrivial commutation
relations:

[(∂x∂w) + 1, w2 + κ2] = 2(w ∂x ), [(w ∂x ), (∂x∂w) + 1] = �x .

This would not hold were m > 0, requiring �x + m2 in (12.10a). Moreover, were
κ = 0, then (12.10d) would not follow from (12.11). What is more: in the light of
the display above, the two key equations are (12.10d) and (12.10b), since we may
regard the other two – whose physical meaning is obvious – as their compatibility
conditions. In summary: the system (12.10) is associated specifically to the WP.

Let us consider the transformation ∂w 	→ iv, w 	→ −i∂v in the Wigner system of
equations [26, 27]. There ensues the relation

(W W ) = 2(pw)(p ∂w)(w ∂w) − w2(p ∂w)2 − (pw)2 �w

= 2(pv)(p ∂v)(v ∂v) − v2(p ∂v)
2 − (pv)2 �v.

Therefore (W W ) is Fourier-invariant in this sense.

5For definiteness, we opted for the upper sign in (12.10d); taking the lower one amounts to changing
the sign of κ only.
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In terms of this Fourier-conjugate to w, we now obtain the “smooth solutions” by
Schuster and Toro [3]:

(p∂v)Φ̃( p, v) = 0.

Also, the equations in [11] coincide essentially with those of [3].6 The associated
action functionals [5, 28, 29] look quite complicated.

12.3.2 Invariant Wavefunctions

TheWigner equation (12.10a) tells us that we are on-shell in momentum.We express
this by

Φ(x, w) ∝
∫

d4 p θ(p0) δ(p2)e−i(px)Φ( p, w) ∝
∫

d3 p
| p| e−i(px)Φ( p, w),

and equivalently

Φ( p, w) ∝
∫

d4x ei(px) Φ(x, w)

∣∣∣
p0=| p|

,

with our choice of sign for p0. Nowwemay relate the above 〈 p, t | Φ〉withΦ(x, w).
Consider again (12.10d), or formula (12.12), and let the gauge γ := w0/p0 =
w0/| p|. It follows that

Φ( p, w) ≡ Φ( p, w0,w‖, t) = exp(−iw0/| p|)Φ( p, 0, t)

=: exp(−iw0/| p|) 〈 p, t | Φ〉 = exp(−i p · w/| p|2) 〈 p, t | Φ〉
=: exp(−i( p · w)/| p|2) 〈 p, θ | Φ〉.

For any ( p, θ) there holds |Φ( p, γ, θ)| = |Φ( p, 0, θ)|. Notice that for the definition
(12.9) of the scalar product one should not integrate on the real gauge variable γ ,
which would yield a divergent expression.

The corresponding representation U of P↑
+ satisfies

U (a,Λ)Φ(x, w) = Φ
(
Λ−1(x − a),Λ−1w

)

on the space of solutions of the (12.10). We have found the simple theory of an
invariant object for the WP – with the help of the Wigner equations themselves.

The internal parts of Lorentz group generators in this formalism commute with
the orbital parts. They are of the form [23]:

6“... alle diese Gleichungssysteme, sofern sie widerspruchsfrei sind, äquivalent sind” [24].
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K
c
int,cov = i

(
w0∂wc + wc∂w0

) =: Kc
w;

L
c
int,cov = −iεc

abw
a∂wb =: Lc

w ≡ S
c.

Note the commutation relations S × S = iS, in Schwinger’s notation; and that the
total angular momentum generators can be written as L = −i p × ∂ p + S, just like
for massive particles.

Remark 2 Given p such that p2 = 0 and p0 > 0, its three-dimensional little group
G p of rotations around p/| p| and null rotations preserving p is well known. Any
proper, orthochronous Lorentz transformation of the sphere must have (properly
counted) two fixed points [30]. One possibility is that both null directions coincide;
these are precisely the parabolic Lorentz transformations, called in context “null
rotations”; they are discussed further in Appendix 2.7

Given a pair (p, w) satisfying p0 > 0, p2 = (pw) = w2 + κ2 = 0 and another
pair (p′, w′) of the same kind, there is a unique restricted Lorentz transformation Λ

such Λp = p′ and Λw = w′.

Remark 3 The scalar product (12.9) is Lorentz-invariant, though not obviously so.
A manifestly invariant form of the scalar product appears in Wigner [24]: given two
solutions Φ(p, w), �(p, w) of (12.10), define 〈� | Φ〉 by:

2
∫

d4 p d4w �∗(p, w)Φ(p, w) δ(p2) δ(w2 + κ2) δ
(
(pw)

)
(pu) δ

(
(uw) − a

)
,

(12.13)

where u is any timelike 4-vector such that u2 = 1 and a an arbitrary parameter.
For the convenience of the reader we follow Wigner in verifying that the integral is
independent of such u and a. Differentiating first with respect to a,

d

da
〈� | Φ〉

= −2
∫

d4 p d4w �∗(p, w) Φ(p, w) δ(p2) δ(w2 + κ2) δ
(
(pw)

)
(p∂w) δ

(
(uw) − a

)

= 2
∫

d4 p d4w �∗(p, w) Φ(p, w) p2δ(p2) δ(w2 + κ2) δ′((pw)
)
δ
(
(uw) − a

) = 0.

Thus one can as well drop a in the expression (12.13). Next, by application of
the differential operators uα ∂/∂uβ ∓ uβ ∂/∂uα , one easily checks that the same
expression is independent of the direction of u. So we can as well choose u = (1, 0),
leading to

7The most general transformation fixing a null direction decomposes into a null rotation (belonging
to a two-parameter set), a rotation and a boost. The four of them together constitute aBorel subgroup
of the Lorentz group; the last two have as invariant directions those of k and the antipodal −k; the
boost does not leave k itself invariant.
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〈� | Φ〉 = 2
∫

d4 p d3w �∗(p, w)Φ(p, w) p0 δ(p2) δ
(|w|2 − κ2

)
δ( p · w)

=
∫

d3 p d3w �∗(p, w)Φ(p, w) δ
(|w|2 − κ2

)
δ( p · w),

which, with p0 = | p| andw0 = 0 in the arguments of the wavefunctions understood,
coincides with (12.9).

Wigner [24] discusses as well in great detail the passage to x-space, yielding
several equivalent forms, among which an attractive one is given by:

〈� | Φ〉 =
∫

d3x d3w ∂t�
∗(x, w) ∂tΦ(x, w) δ

(|w|2 − κ2
)
δ(x · w).

12.4 The Propagator

In our notation, and with slightly different conventions, the following formula is
found in [31, (3.15)]:

D̃(x, x ′;w0,w, w′0,w′) = −D̃(x ′, x;w0,w, w′0,w′)

= δ(w2 + κ2)
1

(2π)3

∫
d3 p

sin | p|(t − t ′)
| p| ei p·(x−x′) δ(pw)

× δ3
(| p|(w − w′) − (w0 − w′0) p

)
ei(w0−w′0)/| p|.

The above D̃ is a Lorentz invariant distribution, which satisfies theWigner equations.
Consider the skewsymmetric form s given by

s(�,Φ) :=
∫

d3x ′ [�(x ′) ∂t ′Φ(x ′) − Φ(x ′) ∂t ′�(x ′)
]

t ′=const .

If D denotes the ordinary Jordan–Pauli propagator for massless fields, the solution
of the wave equation with Cauchy data Φ(t ′, x′)|t ′=const is given by
s
(
D(x,−),Φ(−)

)
.

Now it should be clear that
∫

d4w′ s
(
D̃(x,−;w,w′),Φ(−;w′)

)

= δ(w2 + κ2)

(2π)3

∫
d3w′ δ3(w − w′)Φ(x;w′, w0) δ(pw) = Φ(x;w),

if Φ already satisfies the Wigner equations; and this expression becomes a solution
in the general case – since D̃ itself satisfies them. Therefore this D̃ behaves like a
reproducing kernel, exactly as the ordinary Jordan–Pauli propagator, which repro-
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duces any solution of the KG equation, and produces one such from an arbitrary
spacetime function.

Notice moreover that D̃ is causal: D̃ = 0 when (x − x ′)2 < 0. This does not
contradict Yngvason’s theorem [32] on the nonlocality of quantum fields associated
to WPs, for, among other reasons, the wavefunctions depend on an extra variable.

12.5 Connecting with the Standard Formalism

The point de départ of the standard formalism for the Wigner modules is the choice
of a reference 4-momentum k = (|k|, k), which for massless particles can only be
arbitrary. Its “length” |k| is irrelevant, so here it is assumed equal to one. The time-
honoured choice for the reference momentum is k := (1, 0, 0, 1). The representation
space of its corresponding little group for a boson WP is spanned by vectors lying
on the circle |ξ |2 := (ξ 1)2 + (ξ 2)2 = κ2: either

|ξ 1, ξ 2〉 ≡ |κ; τ 〉, where τ := arctan(ξ 2/ξ 1),

or |κ; h〉, with h denoting the helicity, computedwith respect to the referencemomen-
tum. For these kets:

T1,2 |ξ 1, ξ 2〉 ≡ W
1,2 |ξ 1, ξ 2〉 = ξ 1,2 |ξ 1, ξ 2〉;

and also:

exp(iβW0) |κ; τ 〉 = |κ; τ − β〉, or exp(iβW0) |κ; h〉 = eiβh |κ; h〉.

Then one can employ the standard wave functions:

ψst( p, ξ 1, ξ 2) := 〈 p, ξ 1, ξ 2 | ψ〉

defined on the lightcone and the internal circle by the customary lifting to a unirrep
space of the Poincaré group.

For a general unit vector k, the generators of rotations take the form

Lk = −i p × ∂ p + p × (k × p)
| p|(| p| + k · p) S · k + p

| p| Sξ · k = −i p × ∂ p + p + | p|k
| p| + k · p Sξ · k

(12.14)
where ξ is taken transversal to k of norm κ , and Sξ := −iξ × ∂ξ . For the boost
generators, one finds:
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Kk = i | p| ∂ p − k × p
| p| + k · p Sξ · k + p · ξ

| p|2
p + | p|k

| p| + k · p − ξ

| p|
= i | p| ∂ p − k × p

| p| + k · p Sξ · k + p
| p|2 ×

(
p + | p|k

| p| + k · p × ξ

)
. (12.15)

The generators are defined on a (dense) subspace of the Hilbert space consisting
of twice-differentiable functions vanishing on a cylinder centered on the negative
k-axis, including the origin – keep in mind the analysis in [22]. When k = (0, 0, 1),
one recovers from (12.14) and (12.15) the familiar expressions found by Lomont and
Moses [33] long ago.

It stands to reason that wavefunctions pertaining to the standard routine must be
related to the invariant wavefunctions of Sect. 12.3.2 by unitary transformations. Let

α := arccos(k · p/| p|) = arctan
| p − ( p · k)k|

p · k .

In [31] one finds the assertion that such unitary transformations essentially consist
of a rotation representative:

δ(|ξ |2 − κ2) δ(ξ · k) ψ0( p, ξ) := eiw0/| p| exp
(

iα
k × p
|k × p| · S

)
Φ( p, w)

∣
∣
∣
w=ξ+w0 p/| p| .

Reciprocally, given k:

Φ( p, w)

= e−iw0/| p| exp
(

−iα
k × p
|k × p| · Sξ

)
δ(|ξ |2 − κ2) δ(ξ · k) ψ0( p, ξ)

∣
∣∣
ξ=w−w0 p/| p|

.

Let us simply denote

V := exp

(
iα

k × p
|k × p| · S

)
.

It is perfectly true that V “diagonalizes” the helicity operator:

V (S · p/| p|)V † = S · k.

Straightforward albeit tedious calculations show that the correct internal angular
momentum components transversal to k in (12.14) are recovered by this unitary
transformation. (See also [34, 35].) Unfortunately, we cannot go into this matter
here.

Acknowledgements A report by Alejandro Jenkins of a conversation withMarkWise set this work
inmotion.We are grateful to Alejandro, as well as to Fedele Lizzi and Patrizia Vitale, for discussions
on the gyroscope property, and to Karl-Henning Rehren for most useful remarks about the equations
by Wigner. We thank Daniel Solís for checking App. B and a useful observation. The project has
received funding from the European Union’s Horizon 2020 research and innovation programme



238 J. M. Gracia-Bondía and J. C. Várilly

under the Marie Skłodowska-Curie grant agreement No. 690575. JMG-B received funding from
Project FPA2015–65745–P of MINECO/Feder, and acknowledges the support of the COST action
QSPACE. JCV received support from the Vicerrectoría de Investigación of the Universidad de
Costa Rica.

Appendix 1: Poincaré Group Conventions

Our metric on the Minkowski spaceM is mostly-negative. The inner product of two
vectors x ≡ xμ, p ≡ pν of spacetime is denoted with parentheses: (xp) = xμ pμ.
When (we hope) it does not cause confusion, we often write p2 = (pp), say.

The Lie algebra p ofP has a basis of ten elements {P0, Pa, La, K a : a = 1, 2, 3},
corresponding respectively to time translations, space translations, rotations and
boosts. The commutation relations for the Lorentz subgroup are as follows:

[La, Lb] = εab
c Lc, [La, K b] = εab

c K c, [K a, K b] = −εab
c Lc.

The commutation relations are realized 8 by K a = 1
2σ

a and La = − i
2σ

a .
In the real four-dimensional representation:

J 01 ≡ K 1 =

⎛

⎜⎜
⎝

1
1

0
0

⎞

⎟⎟
⎠ ; J 02 ≡ K 2 =

⎛

⎜⎜
⎝

1
0

1
0

⎞

⎟⎟
⎠ ; J 03 ≡ K 3 =

⎛

⎜⎜
⎝

1
0

0
1

⎞

⎟⎟
⎠ ;

J 23 ≡ L1 =

⎛

⎜⎜
⎝

0
0

−1
1

⎞

⎟⎟
⎠ ; J 31 ≡ L2 =

⎛

⎜⎜
⎝

0
1

0
−1

⎞

⎟⎟
⎠ ; J 12 ≡ L3 =

⎛

⎜⎜
⎝

0
−1

1
0

⎞

⎟⎟
⎠ ,

with the same commutation relations. Remark that

(L1 + K 2)2 =

⎛

⎜⎜
⎝

1 −1
0
0

1 −1

⎞

⎟⎟
⎠ = (L2 − K 1)2

and (L1 + K 2)3 = (L2 − K 1)3 = 0.
It is advisable to pull these generators together in matrix form:

8Or by K a = − 1
2σ a and La = − i

2σ a . In the usual terminology, K a = 1
2σ a and K a = − 1

2σ a cor-
respond to the D(0, 1

2 ) and D( 12 , 0) spinor representations respectively, according to [19, Chap.8].



12 On the Kinematics of the Last Wigner Particle 239

Jμν =

⎛

⎜⎜
⎝

K 1 K 2 K 3

−K 1 L3 −L2

−K 2 −L3 L1

−K 3 L2 −L1

⎞

⎟⎟
⎠ or Jμν =

⎛

⎜⎜
⎝

−K 1 −K 2 −K 3

K 1 L3 −L2

K 2 −L3 L1

K 3 L2 −L1

⎞

⎟⎟
⎠ .

The general expression is (Jρσ )αβ = δα
ρ gσβ − δα

σ gρβ , and the commutation relations
are summarized as:

[Jρσ , Jμν] = −gρμ Jσν − gσν Jρμ + gσμ Jρν + gρν Jσμ. (12.16)

The dual tensor:

J ∗ρμ := − 1
2ε

ρμντ Jντ =

⎛

⎜
⎜
⎝

−L1 −L2 −L3

L1 K 3 −K 2

L2 −K 3 K 1

L3 K 2 −K 1

⎞

⎟
⎟
⎠

plays a role in the theory of the WP. Notice that K · L = 1
2 Jρμ J ∗ρμ is a relativistic

invariant; as is K 2 − L2 = 1
2 Jρμ J ρμ = − 1

2 J ∗
ρμ J ∗ρμ. These are just the Casimirs of

the Lorentz group. A generic infinitesimal Lorentz transformation is of the form

Λ � 1 + 1
2ω

ρσ Jρσ , or Λμ
ν = δμ

ν + ωμ
ν ,

where ωρσ must be skewsymmetric.
The Pμ mutually commute. The remaining nonvanishing commutation relations

for P are given by:

[La, Pb] = εab
c Pc, [K a, Pb] = −δab P0, [K a, P0] = −Pa;

that is, [J κρ, Pμ] = gμρ Pκ − gμκ Pρ .
Let U (Λ) be the unitary operator acting on one-particle states, corresponding to

a Lorentz transformation Λ. As discussed for instance in [36, Sect. 2.4], one finds
that

U †(Λ)Pμ U (Λ) = Λμ
ν P

ν; U †(Λ) Jμν U (Λ) = Λμ
ρΛ

ν
σ J

ρσ ,

where by P and J = {K,L} we denote hermitian generators on Hilbert space, with
commutation relations:

[La,Lb] = iεab
c L

c; [La,Kb] = iεab
c K

c; [Ka,Kb] = −iεab
c L

c;

that is, (12.16) leads to

[Jρσ , Jμν] = i
(−gρμJσν − gσνJρμ + gσμJρν + gρνJσμ

)
.
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Appendix 2: The Lorentz Decompositions of Null Rotations

The unique decomposition of an arbitrary (proper orthochronous) Lorentz matrix S
into the product of a rotation and a boost is well known [19, Chap. 1]. It becomes

S =
(

α at

c N

)
=

(
1 0
0 N − cat/(1 + α)

)
La/α

=:
(
1 0
0 N − cat/(1 + α)

) (
α at

a 13 + aat

1+α

)
,

where α2 = 1 + a2. Since S and St are Lorentz, which implies N a = αc, N t c = αa
and N t N = 13 + aat , one checks that R := N − cat/(1 + α) is a rotation and that
Ra = c, and thus also R + Raat/(1 + α) = N .

We want to decompose null rotations in G p. Note that there is an infinity of
spacelike surfaces, of timelike, null or spacelike vectors, which are orbits of G p

in M, each isometric to the group of motions of a plane [37]. Consider those null
rotations which leave invariant the standard momentum k = (1, 0, 0, 1). Denoting
when convenient b2

1 + b2
2 by |b|2, a general null rotation fixing k is given by:

S(b1, b2) :=

⎛

⎜⎜
⎝

1 + 1
2 |b|2 −b2 b1 − 1

2 |b|2
−b2 1 0 b2
b1 0 1 −b1

1
2 |b|2 −b2 b1 1 − 1

2 |b|2

⎞

⎟⎟
⎠ =:

(
α at

c N

)
.

Simplifying further, we work out first the case S(0,−b), with b > 0.
Here α2 = 1 + b2 + 1

4b4 = (1 + 1
2b2)2 so that 1 + α = 1

2 (4 + b2), and S(0,−b)

factorizes as

⎛

⎜
⎜
⎝

1 + 1
2b2 b 0 − 1

2b2

b 1 0 −b
0 0 1 0

1
2b2 b 0 1 − 1

2b2

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

1 0 0 0
0 4−b2

4+b2 0 − 4b
4+b2

0 0 1 0
0 4b

4+b2 0 4−b2

4+b2

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

1 + 1
2b2 b 0 − 1

2b2

b 1 + 2b2

4+b2 0 − b3

4+b2

0 0 1 0
− 1

2b2 − b3

4+b2 0 1 + b4

2(4+b2)

⎞

⎟
⎟
⎠

=: RL = (RL R−1)R =: L ′ R.

We see clearly that R is a rotation around the y-axis, of positive angle θ turn-
ing anticlockwise from the positive z-axis towards the positive x-axis, with θ =
2 arctan(b/2). The velocity associated with the boost L ′ is:

v = (
2b/(2 + b2), 0,−b2/(2 + b2)

);

therefore its rapidity parameter is given by ζ = arcsinh
(
1
2b

√
4 + b2

)
; the direction

of the boost forms an angle arctan(b/2) with the x-axis, tilted towards the negative
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z-axis. For small angles, it is intuitive that the boost undoes the turn effected by the
rotation. The result reproduces the one indicated without proof in [32].
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Chapter 13
Dimensional Deception
for the Noncommutative Torus

Fedele Lizzi and Alexandr Pinzul

Abstract We study the dimensional aspect of the geometry of quantum spaces.
Introducing a physically motivated notion of the scaling dimension, we study in
detail the model based on a fuzzy torus. We show that for a natural choice of a
deformed Laplace operator, this model demonstrates quite non-trivial behaviour:
the scaling dimension flows from 2 in IR to 1 in UV. Unlike another model with the
similar property, the so-called Horava-Lifshitz model, our construction does not have
any preferred direction. The dimension flow is rather achieved by a rearrangement of
the degrees of freedom. In this respect the number of dimensions is deceptive. Some
physical consequences are discussed.

Physical spacetime appears to be four a four-dimensional. Four dimension manifolds
have very interesting structures, as it can be seen perusingWikipedia [31].Herewe are
making a long distance/low energy statement, since it is well known the possibility
that there may be more dimensions curled and visible only at higher energies. These
Kaluza-Klein theories are usually a byproduct of string theory (see for example [28]).
There are good reasons, however, for which physicists may wish that the number of
dimension actually decreases: gravity.

Gravity in four dimensions is a nonrenormalizable theory, in the perturbative
series the diagramswhich contain exchange of gravitons diverge. In two-dimensions,
on the other side, gravity is a renormalizable theory, in fact the Einstein-Hilbert
action is a topological invariant. It would therefore be nice to have a space which is
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four dimensional at low energies, but two dimensional at high energies. A relevant
attempt in this direction has been made in [13], but in this case the price to pay
is to break Lorentz invariance, by picking up a definite direction and identify it
with time. In this contribution we will present a space (a torus) which has an higher
number of dimensions in the ultraviolet, comparedwith the infrared. The fundamental
isometries are preserved, and in particular there is no need to choose a particular
direction. This is not yet a realistic model of spacetime, the space is compact and
Euclidean, but it is rather a “proof of concept”. Also, in the ultraviolet the space is
highly nontrivial and noncommutative, while in the infrared the noncommutativity
can be rendered as small as wished. Most of what is presented here appeared in [19].

We will work in the algebraic description of geometry (and its generalizations)
based on spectral triples [7, 8]. One starts with a set of data: an involutive algebrawith
certain properties of the norm, i.e. aC∗-algebra,A represented as bounded operators
on a Hilbert space, H , and a (non-necessarily bounded) operator D , which is a
generalization of theDirac operator, andwewill usually callDirac operator tout court.
This formulation leads immediately to nontrivial generalizations when the algebra
is noncommutative, leading to Noncommutative Geometries. Accordingly we will
define the dimension of a space in a purely spectral way, a definition originally due
toWeyl. We will then show how a proper matrix approximation of a two dimensional
torus will have two different limits, one is the long distance one, in which it appears
two dimensional, in the other it will be, metrically speaking, the sum of two circles,
hence a one dimensional space. It is important to notice that these two circles are
not the circles whose product (not sum) give the torus. This is a phenomenon due to
noncommutativity, recalling the presence of different phases in field theory [10, 12,
20, 24]. We will call matrix approximations of space “fuzzy”, when they preserve
the fundamental symmetries.

13.1 Dimensions à la Weyl

Let me first of all give the definition of dimension which is most useful for our
purposes. It is due to Weyl and is based on the growth of the eigenvalues of the
Laplacian. Let N�(ω) be the number, counting multiplicities, of eigenvalues of the
Laplacian � on a compact Riemannian manifold, less then ω. Then there is only one
value of d such that the following expression is finite

lim
ω→∞

N�(ω)

ω
d
2

= Vol(M )

(4π)
d
2 �( d2 + 1)

(13.1)

where Vol is the volume of the space, since we have a Laplacian we can define in
fact a metric. The right hand side of (13.1) can actually be used to calculate the
volume, admittedly in a rather elaborate way! This formula is purely spectral, and it
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generalizes without any change to the noncommutative case. Clearly if the algebra
is a finite dimensional one (a matrix algebra), the number of dimension d = 0.

Let us now calculate the dimension of the various kind of tori we will need in
the following, commutative or otherwise. Consider first a flat commutative 2d torus
T2 = S1 × S1 with possibly different radii r and R. In Fourier transform the algebra
of functions on this torus, i.e. the algebra which would appear in the spectral triple,
is generated by two commuting generators: u = exp 2π i x

r and v = exp 2π i y
R

∀a ∈ A ≡ C∞(T2) , a :=
∑

(l,m)∈Z2

a(l,m) ulvm , (13.2)

continuity is ensured by the fast (Schwarzian) decay of the coefficients.
The passage to a noncommutative torus is done keeping the above expression but

deforming the commutativity of the generators

VU = e2π i θ UV (13.3)

for some real parameter θ called the deformation parameter. In the limit of θ → 0
one recovers the usual torus. We will call the algebra of the noncommutative torus
generated by U and V as T2

θ . It is an infinite dimensional algebra for alla values of
θ , both rational or irrational.

For a generic θ the algebra of the noncommutative cannot be realized by finite
matrices, but for θ = p/q rational there is a q × qmatrix representation ofU and V ,
and hence of the whole algebra which becomes just Matq(C). In this case the relation
(13.3) is satisfied by the clock and shift matrices:

Cq :=

⎛

⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
0 e2π i θ 0 · · · 0
0 0 e2 2π i θ · · · 0
...

...
...

. . .
...

0 0 0 0 e(q−1) 2π i θ

⎞

⎟⎟⎟⎟⎟⎠
, Sq :=

⎛

⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

. . . 1
1 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎠
(13.4)

These matrices are unitary, traceless and satisfy the relations (Cq)
q = (Sq)

q = 1q,
hence they generate Mq(C). We will call this particular noncommutative geometry a
fuzzy torus.

Both the commutative and noncommutative torus have two (outer) derivations
defined as

{
∂1U = 2π iU , ∂1V = 0
∂2U = 0 , ∂2V = 2π i V

⇔

⎧
⎪⎨

⎪⎩

∂1a = 2π i
∑

(l,m)∈Z2

l a(l,m)UlVm

∂2a = 2π i
∑

(l,m)∈Z2

ma(l,m)UlVm . (13.5)

It is easy to see that the spectrum of the Laplacian is proportional to the sum of the
square of two integers
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Spec(	com) ∝
{
n21
r2

+ n22
R2

, n1, n2 ∈ Z

}
. (13.6)

and hence the Weyl dimension of is two for both commutative and noncommutative
tori. The fuzzy torus does not have outer derivations, in particular does not have the
analog of these derivations, but being a finite algebra it will anyway have dimension
zero, at least at high enough energy (see below).

We now generalize Weyl’s concept of dimension to define al effective, or scaling
concept of dimension. The necessity of this generalization comes form a physical
reasoning. The spectral dimension is an concept, i.e. it has to do with arbitrarily large
scales, as the spectrum of the Laplacian has the dimensions of an energy. In reality
no experiment can probe all scales up to infinity. Physically quantities, moreover,
depend on the scale via the renormalization group. This leads to the definition of
scalingdimension:

d(ω) := 2
d lnN�(ω)

d lnω
. (13.7)

This is the dimension seen in experiments that probe the physics only up to the scale
ω. The scale is defined in terms of the spectrum of a relevant physical Laplacian,
the operator controlling the dynamics. The difference between the UV-dimension
and the scaling can be seen when applied to any matrix geometry, i.e. when the
relevant operators have finite spectra. The counting function in this case goes to a
constant when ω → ∞. Any matrix geometry has a UV-dimension equal to zero.
At the same time, it seems very natural that, if the spectrum is truncated at very
high energy, we will not be able to tell the smooth geometry from the matrix one.
Hence in any accessible experiment we will see the matrix geometry as a smooth
one with some defined dimension, possibly with some “quantum” corrections. This
observation makes the concept of a scaling dimension to be a very natural one, and
it can be used for various physical tasks, for example in [11, 26].

Let us study a simplified model for which the number of dimensions can be
deceptive. Start with the torus with two different radii, with the spectrum is given by
(13.6). Introduce now some sort of “1-d fuzzyness” via the operator �c diagonal in
the basis above, but with the spectrum truncated on the direction of V at the integerN .

�cU
n1 = n21U

n1 , �cV
n2 =

{
n22V

n2 |n2| ≤ N
0 |n2| > N

(13.8)

Clearly �c is not a differential operator, and it does not have compact resolvent. The
number N implicitly defines a length and therefore an energy scale. While in the R
direction the Fourier series does not truncate, and therefore variation of arbitrarily
small length can be taken into account, in the r direction only harmonics of width
r/N contribute:

Spec(	nc) =
{
1

R2

(
μ2n21 + n22

)
, n1, n2 ∈ Z , |n2| ≤ N

}
(13.9)
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Fig. 13.1 a The structure of a typical spectrum with the n2-direction truncated at N ; b The solid
curve μ2n21 + n22 = ω represents a cut-off (we set R = 1). All the points of the spectrum inside the
shadowed area are below the cut-off

The structure of a typical spectrum can be represented graphically as on Fig. 13.1a,
while Fig. 13.1b gives the graphical answer for the counting function N�(ω): When
μ ∼ 1 the low energy spectrum, up to N , is basically that of a two dimensional
torus. The dimension is “deceptively” two, a low energy experiment will probe a
two dimensional torus. When ω reaches N a transition phase starts.The number of
dimensions decreases to one.

Consider now first the case 1  ωR2 < μ2 and at the same time ωR2 < N 2. The
n1 semi-axis of the cut-off ellipse is so small that no state with n1 �= 0 will contribute
but the number of states with non-zero n2 is enough to allow the application of the
scaling dimension formula.

N�(ω) ∼ 2
√

ωR ⇒ d(ω) = 2
d lnN�(ω)

d lnω
= 1 (13.10)

We arrive at a very natural and expected result: if the experiment probes the scales
below the energy needed to excite the first mode it does not see the corresponding
compactified dimension.

Increasing the cut-off scale ω the states with n1 �= 0 will start contributing to the
counting function.Onlywhen a great number of themwill enter, i.e.whenωR2 � μ2,
(so one can pass from sum to integral) one can start using again the formula for scaling
dimension to determine the dimension. This can happen either when

(a) ωR2 is still less then N 2

(b) ωR2 > N 2 (but still of the order of N )
(c) ωR2 � N 2.

This is shown in Fig. 13.2.
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Fig. 13.2 The three cases for the spectrum of the operator (13.8) described in the text

We have seen that by changing the Laplacian it is possible to deceive the number
of dimensions in a variety of ways. In all cases1 however the dimension suppressed
and the dimension where the original ones, and a choice has been made to suppress
one of them. As in the case of Hořava-Lifshitz the fundamental symmetry of the
space, which in this case is U (1) ×U (1) acting as independent rotation on the two
cycles, has been broken. We will now present a two dimensional model for which
the number of dimensions is again going from two to one, but the high energy space
retains the fundamental symmetry of space, and the single ultraviolet dimension
emerges independently form the original two.

13.2 Matrix Approximations to the Noncommutative Torus

Our construction is based on approximating a torus by some sort of a fuzzy torus.
Since these are nothing but matrix algebra one might think that the algebra of the
noncommutative torus might be recovered as the inductive limit of Matq(C). This
is however impossible, any indictive limit of finite algebra is approximatively finite,
and there are mathematical results, based on K-theory, which show that this is im-
possible [30]. In [17, 25] it was clarified how one should construct and interpret the
finite matrix approximation of the algebra of a noncommutative torus for an arbitrary
θ . Because we will not use this construction in this work, we refer to [17] for all the
details and to the reviews [21, 22] for the broader context.

There is however a construction, due to Elliott and Evans (EE) [9] which shows
that the algebra of the noncommutative torus is the inductive limit of the algebra of
two copies of the algebra of matrices whose entries are functions on a circle T ≡ S1.
Due to the presence of these functions, the algebra is not approximatively finite, and
since the K-theory of a circle is Z there is the required matching of K-theories. Note

1There is one more case: μ  1. It can be analysed in the complete analogy with the ones we have
considered. We will not describe it as it does not offer anything new.
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however that at the finite level the algebra corresponds to a topological sum (not a
product!) of two circles, i.e. a one-dimensional space.

Here we will just sketch the construction referring to the original paper [9] and
to [19, Appendix] for details.

Consider a sequence of rational numbers converging to an irrational2:

θ =: lim
n

{θn = pn/qn} (13.11)

then qn → ∞. The construction is based on the existence of a projection element
of P11 ∈ T2

θ , whose specific form and construction can be found in the original
literature. What is important is the fact that it may be “translated” to build another
element calledP22. The translation operation is simply a redifinition of the generators
as U → epn/qn U, V → V . This can be then iterated till Pqnqn . These elements will
form the diagonal part of our matrix approximation. We then define the off diagonal
elementsP21 as the unitary part of P22VP11, and so on for all Pij.

By construction
PijPkl = δjkPil (13.12)

and it would seem that the P’s might act as a basis for M(qn, c), except that there is
a fundamental caveat.

It is possible to obtain P1qn in two different ways: either as P12P23 . . .Pqn−1 q, or
alternatively translating qn − 1 times P21. If these two operators were the same we
would have constructed a subalgebra ofT2

θ isomorphic to thematrix algebraMatq(C).
They are not the same, but are related by a partial isometry z, so that the Pij’s and
z generate the algebra of matrix valued functions on the circle Mq2n(C

∞(S1)) ⊂ T2
θ .

Exchanging U ↔ V (and after a unitary transformation) it is possible to obtain
another set of matrix units and an isometry, orthogonal to the first one. The crucial
point is that all these operators are element of the original algebra, and that as n → ∞
we are just building a sequence of growing subalgebras.

To show3 how the construction works let us define the following unitary elements
of T2

θ :

Un :=
(
Cq2n 0
0 Sq2n−1(z

′)−1

)
, Vn :=

(
Sq2n(z) 0

0 Cq2n−1

)
(13.13)

where Cq is an usual clock matrix, butSq(z) is “almost” a shift matrix, where it not
for the presence of the partial isometry z:

2The construction can be made, with little changes, also for theta rational.
3In the following, when there is no cause of confusion, we will sometime omit the subscript n from
q : n, q′

n and the like. This will render some formulas more explicit.
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Cq :=

⎛

⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
0 ωq 0 · · · 0
0 0 ω2

q · · · 0
...

...
...

. . .
...

0 0 0 0 ω
q−1
q

⎞

⎟⎟⎟⎟⎟⎠
, Sq(z) :=

⎛

⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

. . . 1
z 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎠
(13.14)

The two operators Un and Vn generate the matrix algebra An, which is nothing but
two copies of the algebra of matrices of functions valued on a circle. The isometry
z playing the role of eiϕ generator:

An
∼= Mq2n(C

∞(S1)) ⊕ Mq2n−1(C
∞(S1)) (13.15)

The two operators satisfy a relation similar to the one of the original noncommu-
tative torus. It is in fact an approximation of to which it converges to it in the limit
n → ∞.

VnUn = ωnUnVn , where ωn =
(

ωq2n1q2n 0
0 ωq2n−11q2n−1

)
(13.16)

The central point of the approximation is the fact that Un and Vn converge in norm
to the original U and V .

lim
n→∞ ‖Un −U‖ = lim

n→∞ ‖Vn − V ‖ = 0 (13.17)

This enables the proof that the inductive limit of the algebras An is indeed the
noncommutative torus

lim
n

An = T2
θ (13.18)

The formal proof can be found in the original paper [9] or, with the notation used
here, in [19]. Intuitively what happens is that the matrices Un and Vn grow in size
till filling up the whole og T2

θ . The construction works also for the rational case (one
can have a sequence of rational θn converging to another rational θ ) [18, 29]. Note
also that the algebras An are not approximatively finite, and that its K-theories are
Z ⊕ Z. It is therefore perfectly possible that they converge to the noncommutative
torus, unlike a pure matrix algebra.

At a finite n the algebra An is the algebra of matrix valued the functions on
two circles. Technically it is “Morita equivalent” to the algebra of complex valued
functions on the two circles. Two Morita equivalent algebras have the same space of
representations, with the same topology. At the same time it is possible to make the
noncommutativity arbitrarily small. Such a space will be indistinguishable from two
circles. In the next section we will also discuss the metric properties of this space.

The main characteristic of the construction is that it preserves the symmetries
of the original space. While other constructions, (for example the Hořava-Lifshitz
or Kaluza-Klein ones) in order to reduce the dimensions have to pick a preferred
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direction (or directions), in our case the two circle are on an equal footing, and
no direction has been chosem. The original fundamental symmetry of the torus of
independently “rotate” the two cycles: U → eiα1 U, V → eiα2 V is still a symmetry
of the high energy space.

13.3 The Truncation Map

In this section we define a map (the truncation map) which associates to an element
of the noncommutative torus an element of An, i.e. a matrix valued function on two
circles. In particular:

∀a ∈ Aθ , �n(a) :=
∑

(l,m)∈Z2

a(l,m)Ul
nV

m
n (13.19)

since (Cq)
q = 1q, but (Sq(z))q = z1q. Defining [. . .] the integer part we have

a(n)(m +
[q
2

]
, r; l) :=

∑

s∈Z
a(sq + m, lq + r)

a′(n)(m, r +
[q
2

]
; s) :=

∑

l∈Z
a(sq + m, lq + r) (13.20)

Rearranging the coefficients in order to explicitly see the functions on the circle we
have:

�n(a) : =
(

q2n∑

m,r=1

∑

l∈Z
a(n)(m +

[q2n
2

]
, r; l)zl(Cq2n)

m(Sq2n(z))
r

)

⊕
(

q2n−1∑

m′,r′=1

∑

l′∈Z
a′(n)(m′, r′ +

[q2n−1

2

]
; l′)z′l′(Sq2n−1(z

′))m
′
(Cq2n−1)

r′
)

=:a(n)(z) ⊕ a′(n)(z′) (13.21)

where a, a′ are q × q matrices.

13.4 Derivations

The noncommutative torus has the two derivations defined in (13.5). The fuzzy torus,
being a matrix algebra, it has plenty on inner derivations, just commutation with any
element, but it does not have outer derivations, and in particular no derivation which
could satisfy the equivalent of (13.5). However, it possible to define two approximate
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derivations operators. We call call them approximate derivations because they close
the Leibnitz rule on in the limit of large n.

It would be desirable that the derivations inAn leave the Pn and P′
n invariant with

their eigenspace, this means that the diagonal structure (13.13) is preserved under
the derivation. One would like to have some consistent truncation or deformation of
the standard derivations on Aθ defined in (13.5).

Unfortunately it is impossible to define derivations ofAn with the same property
and at the same time respecting the block-diagonal structure.4 It is nevertheless
possible to define two operators which well approximate the derivations. We call
them ∇i, i = 1, 2. The way to motivate (and find) is to consider a truncation of the
usual derivations:

∇i�n(a) := �n(∂ia) + O(· · · ) , (13.22)

where byO(· · · )we denote the terms that vanish in the q, q′ → ∞ limit. The choice
of these terms is made in such a way as to insure that the action of ∇i is diagonal in
the representation (13.21). Explicitly:

∇1�n(a) := 2π i

(
q2n−1∑

m,r=0

∑

l∈Z

(
m −

[q2n
2

])
a(n)(m, r; l)zl(Cq2n)

m−[ q2n
2 ](Sq2n(z))

r

⊕
q2n−1−1∑

m′,r′=0

∑

l′∈Z
(l′q2n−1 + m′) a′(n)(m′, r′; l′)z′l′(Sq2n−1(z

′))m
′
(C̄q2n−1)

r′−[ q2n−1
2

]
)

,

∇2�n(a) := 2π i

(
q2n−1∑

m,r=0

∑

l∈Z
(lq2n + r) a(n)(m, r; l)zl(Cq2n)

m−[ q2n
2 ](Sq2n(z))

r

⊕
q2n−1−1∑

m′,r′=0

∑

l′∈Z

(
r′ −

[q2n−1

2

])
a′(n)(m′, r′; l′)z′l′(Sq2n−1(z

′))m
′
(C̄q2n−1)

r′−[ q2n−1
2

]
)

.

(13.23)

The ∇i are only approximate derivations because they satisfy the Leibnitz rule only
in the limit of large n.

13.5 Weyl Dimension at Different Scales

Wenow ready to calculate theWeyl dimension of our space at different scales. Define
first the deformed Laplacian �(n) in the usual way as

4It is also true in the zero-dimensional approximation described in [17]. This is because (13.5) is
incompatible with (Cq)

q = 1q.
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�(n) = −∇2
1 − ∇2

2 , (13.24)

Since the general element of An can be written as �n(a) for some a, we have the
eigenvalue problem:

− (∇2
1 + ∇2

2

)
�n(a) = λ�n(a) (13.25)

The eigenvalue problem can be rewritten as

π2

⎛

⎝
q2n∑

m,r=1

∑

l∈Z

(
m2 + (q2nl + r)2

)
a(n)(m +

[q2n
2

]
, r; l)zl(Cq2n )

m(Sq2n (z))
r

⊕
q2n−1∑

m′,r′=1

∑

l′∈Z

(
r′2 + (q2n−1l

′ + m′)2
)
a′(n)(m′, r′ +

[ q2n−1

2

]
; l′)z′l′ (Sq2n−1 (z

′))m′
(Cq2n−1 )

r′
⎞

⎠

=λ

⎛

⎝
q2n∑

m,r=1

∑

l∈Z
a(n)(m +

[ q2n
2

]
, r; l)zl(Cq2n )

m(Sq2n (z))
r

⊕
q2n−1∑

m′,r′=1

∑

l′∈Z
a′(n)(m′, r′ +

[q2n−1

2

]
; l′)z′l′ (Sq2n−1 (z

′))m′
(Cq2n−1 )

r′
⎞

⎠ (13.26)

Using orthogonality relation among clock and shift

Tr
[
(Sq(z)

†)l(C †
q )p(Cq)

m(Sq(z))
r
]

= qβqδlrδpm . (13.27)

we can invert(13.26) to obtain, after some algebra,

λ = −4π2 (
m2 + (q2nl + r)2

) = 4π2 (
r′2 + (q2n−1l

′ + m′)2
)

(13.28)

with
l, l′ ∈ Z, 1 ≤ m, r ≤ q2n, 1 ≤ m′, r′ ≤ q2n−1 (13.29)

This matching condition is a Diophantine relation. It is not sure that there are
solution. In case of no solution it would mean that the spectrum is empty. Fortunately
there are eigenvalues: Both, (q2n−1l′ + m′) and (q2nl + r), are bijective maps to Z.
For every value of l′, r′ there is only one choice of l, r such that (q2n−1l′ + m′) =
(q2nl + r). Since q2n−1 < q2n then ∀r′ ∃!r : r′ = r. This shows that the spectrum is

4π2(m2 + s2), 1 ≤ m ≤ q2n−1, s ∈ Z (13.30)

We are in the same situation of the simplified model described at the beginning,
except that this time we did not artificially cut the spectrum of the Laplacian by hand,
choosing a preferred direction. The spectrum can now easily be calculated in the two
extreme limits, infrared and ultraviolet. What one should expect to see in this limits?
The physical spectral dimension is the dimension as seen in the experiment that can
probe the geometry up to some cut-off scale. The infrared limit should look as the
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commutative geometry, i.e. we expect that the spectral dimension is this case should
be 2.

In the ultraviolet limit, on the other side, we do not have, in general, enough
intuition, used as we are to look at ordinary, commutative, geometry. In this case the
actual calculation should provide us with some hints on where the fundamental, i.e.
ultraviolet, degrees of freedom really live. We will see that this is the case.

IR Regime

The cut-off scale ω is below the characteristic quantum geometric scale. In the case
of a toymodel this scale was controlled by the number of the states alongR-direction.
In the present scale, this means that ω < q22n−1. Only the winding modes (from two
circles) with l, l′ = −1, 0 contribute.We immediately have for the counting function

N�(ω) ∼ degeneracy ×
∫

m2+s2≤ ω

4π2

dmds = const × ω (13.31)

With our definition of scaling dimension we get

dIR = 2 (13.32)

This result is not unexpected, is the consequence of the fact that the effective radii
of two circles are very small. Although we started with all the radii of the order of
1the contribution of (l, l′)-mode to the spectrum is of the order of q2 � 1 (where q
is either q2n or q2n−1). This effectively reduces the radii of the"internal" circles by
the factor of q.

UV Regime

In this case many of the S1 winding modes are excited, l, l′ � 1. The hypothetical
experiment can probe the physics up to the cut-off ω � q22n. In this case we have for
the spectrum (in terms of l′,m′, r′)

4π2 (
r′2 + (q2n−1l

′ + m′)2
) = 4π2q22n−1l

′2
(
1 + O

(
1

l′

))
(13.33)

The counting function in this limit is

N�(ω) → degeneracy ×
∫ q2n−1

dmdr
∫ √

ω

2πq2n−1

−
√

ω

2πq2n−1

dk = const × q2n−1
√

ω (13.34)
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We get the physical dimension in ultraviolet

dUV = 1 (13.35)

Consider now the factor q in the ultraviolet counting function N ∼
√
q22n−1ω.

From the original Weyl theorem the effective size of the ultraviolet dimension is
proportional to q, instead of being of order one or even of order of 1/q. This “elon-
gation” is due to the q2 matrix degrees of freedom This is very suggestive: in the
ultraviolet the new single dimension is fundamental and the two IR dimensions of
the torus have disappeared. And we stress again that the single reduced dimension
is not one of the original two.

13.6 Discussion and Conclusions

We have argued how a construction for the noncommutative torus can give a space
which is effectively two dimensional at low scales, or large distances, while being at
high scales, small distances, actually a two dimensional sum of tho circles. Although
we have discussed a 2 → 1 reduction a 4 → 2 reduction is possible in a straight-
forward way, but its presentation would be looking quite messy. One can reduce
T4

θ = T2
θ × T2

θ to two two tori using a similar reduction, as well as a reducing a four
torus to four circles.

There are other aspects, like the presence of fermions, which could unveil other
interesting features, and in particular the role of the Dirac operator, as opposed
to the Laplacian. In particular in noncommutative geometry the Dirac operator is
fundamental for the construction of the spectral action [5, 6]. The spectral action
approach was used in the Horava-Lifshitz context in [23, 27]. Another aspect is
that the spectral can be obtained form the cancellation of anomalies [2–4, 14] or a
ζ -function regularization [15]. The presence of spaces, such as the one described
here, with a built-in cutoff, alter profoundly the field theory, and in particular the
ultraviolet dynamics of bosons [1, 16]. The relations of this reduction with these
deep ultraviolet studies in another promising issue.

Acknowledgements FL acknowledges the support of the COST action QSPACE, the INFN In-
iziativa Specifica GeoSymQFT and Spanish MINECO under project MDM-2014-0369 of ICCUB
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Chapter 14
Notions of Infinity in Quantum Physics

Fernando Lledó and Diego Martínez

Abstract In this article we will review some notions of infiniteness that appear
in Hilbert space operators and operator algebras. These include proper infiniteness,
Murray vonNeumann’s classification into type I and type I I I factors and the class of
Følner C*-algebras that capture some aspects of amenability. We will also mention
how these notions reappear in the description of certain mathematical aspects of
quantum mechanics, quantum field theory and the theory of superselection sectors.
We also show that the algebra of the canonical anti-commutation relations (CAR-
algebra) is in the class of Følner C*-algebras.

Classifications 81T05 · 43A05 · 47L40

14.1 Introduction

In this article we will review some situations in which different notions of infinity
manifest in quantummechanics and quantum field theory. To begin let us recall some
reasonable and basic definitions of finiteness in set theory (cf., [1, Introduction]). A
set X can be called finite if any of these conditions holds:
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(F1) there is a bijection ϕ : X → {1, . . . , n} for some n ∈ N;
(F2) there does not exist a (disjoint) partition X = X1 � X2 such that |X | = |X1| =

|X2|, where | · | denotes the cardinality of a set;
(F3) every injective map f : X → X is surjective.

The characterization (F1) uses the external structure of the natural numbers and
is constructive, while (F2) identifies finiteness through the absence of a certain kind
of decomposition, which resembles a paradoxical decomposition. The last item (F3)
refers to Dedekind’s definition of finiteness and is intrinsic to the structure. All these
ideas and, in particular, their negation, reappear in a very natural way in the context of
linear operators and operator algebras. This is how they also enter in the description
of some aspects of Quantum Theory.

For infinite sets on which, in addition, a dynamic is defined one can further clas-
sify the system according to the dichotomy amenable versus paradoxical. It must
be highlighted that dynamics is here understood in a wide sense, such as the action
of a group on a space or as the action of an algebra on itself by left multiplication.
The idea of amenability was introduced in the context of group actions by von Neu-
mann in 1929 (cf. [2]) and its absence in the action of the rotation group on the
unit ball B1 ⊂ R

3 was recognized as a fundamental reason that explains the possi-
bility of paradoxically decomposing B1. This fact eventually came to be known as
the Banach-Tarski paradox (cf., [3–5]). Since then this dichotomy amenable versus
paradoxical has enriched many other fields including algebras, metric spaces and
operator algebras. Roughly speaking, amenable structures have an internal approx-
imation in terms of finite substructures (the so-called Følner sequences) that have
controlled growth with respect to the dynamics considered. It is therefore clear that
all finite structures are normally amenable, while infinite structures might be or not.
We refer to [1, 6–12] for additional motivation and results on this body of work.

The aim of this article is to review some results showing the different degrees of
infiniteness that appears in some situations inQuantumTheory.Wealso bring into this
analysis the class of Følner C*-algebras that capture some aspects of amenability
in the context of operator algebras. These algebras can be characterized in terms
of a sequence of unital completely positive linear maps into matrices which are
asymptotically multiplicative. We will show that the CAR-algebra is in this class.
We begin reviewing some notions of infiniteness that appear in the description of
Hilbert space operators and operator algebras. In particular we introduce notions of
proper infiniteness andMurray vonNeumann’s classification into type I and type I I I
factors. We also recall some important results in local quantum physics in relation
to this topic, in particular, Borchers property or the construction of the field algebra
in the theory of superselection sectors.
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14.2 Operators and Operator Algebras in Hilbert Spaces

LetH be a complex separableHilbert space and denote byB(H) the set of all bounded
linear operators on H. Given an operator T ∈ B(H), its operator norm is given by

‖T ‖ := sup
‖x‖=1

‖T x‖ , (14.1)

where ‖x‖ is the Hilbert space norm of the vector x ∈ H induced by the scalar
product 〈·, ·〉.
Example 1 (i) IfH ∼= C

n , then B(H) ∼= Mn(C). In this case, it is well known that
any isometry is necessarily a unitary, i.e., for any M ∈ B(H) with M∗M = 1,
thenMM∗ = 1. This realizesDedekind’s notion (F3) of finiteness in the context
of linear maps, since any injective map must as well be surjective.

(ii) If H ∼= �2(N) (the Hilbert space of square summable sequences), denote its
canonical basis by {ei }i∈N. The infinite dimension of the Hilbert space has now
several consequences that can be understood as a linear analogy to Hilbert’s
Hotel. The following examples of non-unitary isometries can be understood as
a negation of the finiteness condition (F3) in the linear context.

(a) Unilateral shift: Let Sei := ei+1, i ∈ N, i.e., S ∼=

⎛
⎜⎜⎜⎝

0 0 0 . . .

1 0 0 . . .

0 1 0 . . .
...

. . .
. . .

. . .

⎞
⎟⎟⎟⎠. Then we

have S∗S = 1, but SS∗ = 1 − P0, where P0 (·) := 〈e0, ·〉 e0 is the range one
projection onto the linear subspace C · e0. In this case one says that 1 is an
infinite projection (see Definition 1 below).

(b) Generators of theCuntz algebra: define S1ei := e2i and S2ei := e2i+1. These
are isometries (i.e., S∗

1 S1 = S∗
2 S2 = 1) and satisfy, in addition,

S∗
1 S2 = 0 and S1S

∗
1 + S2S

∗
2 = 1 .

In other words, the ranges of S1 and S2 are infinite dimensional and mu-
tually orthogonal subspaces of �2(N), giving a negation of the finiteness
condition (F2). In this case one says that 1 is a properly infinite projection
(see Definition 1 below).

(iii) Partial isometries: A linear map V : H → H is a partial isometry if V ∗V is
an orthogonal projection, which is called domain projection. This condition
directly implies that VV ∗ is also a projection, the so-called range projection.
These partial isometries are a generalization of the notion of isometry.

Next we introduce two types of operator algebras that will be important for this
article, namely, C*- and von Neumann algebras. General references on this topic
are, e.g., [13] or [14, Chap. 2]. We call a *-subalgebra A ⊂ B(H) a C*-algebra if
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it is closed with respect to the uniform topology, i.e., the topology defined by the
operator norm‖ · ‖ (cf., 14.1). Important examples ofC*-algebras are those generated
by isometries having mutually orthogonal ranges. For n ≥ 2, the Cuntz algebra On

(see [15]) is the essentially unique C*-algebra generated by isometries S1, . . . , Sn
satisfying

S∗
i S j = δi j1, i, j ∈ N , and

n∑
i=1

Si S
∗
i = 1 .

Example 1 shows how these isometries can be realized as elements of B(�2(N)).
A unital *-subalgebra N ⊂ B(H) is a von Neumann algebra if it is closed under

the weak operator topology. A useful and alternative way to understand this class
of algebras is through the notion of commutant of a set of operators. If S is a self-
adjoint subset of B(H) (i.e., if S ∈ S ⊂ B(H), then S∗ ∈ S), then we denote by S ′
the commutant of S in B(H), i.e., the set of all operators in B(H) commuting with
all elements in S. Von Neumann’s celebrated bicommutant theorem shows that a
unital *-subalgebra N ⊂ B(H) is a von Neumann algebra iff N = N ′′. Therefore,
if S is a self-adjoint subset of B(H), then S ′′ is the smallest von Neumann algebra
containing S. A von Neumann algebra N is called a factor if it has a trivial center,
i.e., if N ∩ N ′ = C · 1.

Any von Neumann algebra is generated as a norm-closed space by the set of its
projections,whichwedenote byP(N ). Therefore, the classificationwe are interested
in of von Neumann algebras is based on the classification of P(N ). For the purpose
of this article, it is enough to assume that the von Neumann algebraN is a (nonzero)
factor, since general von Neumann algebras can be canonically decomposed in terms
of factors.

Definition 1 Let N be a factor and denote by P(N ) its lattice of orthogonal pro-
jections inN . All the following definitions are moduloN , that is, depend onN . For
P, Q ∈ P(N ) we say

(i) P is minimal if P �= 0 and for any projection P0 ∈ P(N ), P0 ≤ P implies
either P0 = 0 or P0 = P .

(ii) P ∼ Q if there exists a partial isometry V ∈ N such that P = V ∗V and Q =
VV ∗. The relation ∼ is called also Murray von Neumann equivalence.

(iii) P is finite (modN ) if the only projection P0 ∈ P(N ) with P ∼ P0 ≤ P is the
projection P itself.
If P is not finite then it is called infinite (modN ). That is, there is a P0 ∈ P(N )

such that P ∼ P0 < P , namely, P is equivalent to a proper subprojection of
itself.
P is properly infinite if there exist P1, P2 ∈ P(N ) such that P ∼ P1 ∼ P2,
P1 + P2 ≤ P and P1P2 = 0, i.e., P1H ⊥ P2H.

(iv) A factor N is called finite (respectively, infinite or properly infinite) if 1 is a
finite (respectively, infinite or properly infinite) projection.

Remark 1 (a) The definition of finite, infinite and properly infinite projections can
be stated similarly in the context of C*-algebras. It is clear from Example 1
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that 1 ∈ Mn(C) is a finite projection. On the contrary B(�2(N)) is an infinite
C*-algebra via the equivalence 1 ∼ 1 − P0 < 1.
Finally, the Cuntz algebras On (and any C∗-algebra containing them), are the
prototypes of properly infinite C∗-algebras, since we have from Example 1 that
S1S∗

1 + · · · + SnS∗
n = 1 while

1 = S∗
1 S1 = · · · = S∗

n Sn and S∗
i S j = δi j1.

(b) It follows from the definition that any minimal projection in a von Neumann
algebra is automatically finite. The most prominent example of minimal pro-
jection is the range one projection Px (·) := 〈x, ·〉 x , defined for any x ∈ H with
‖x‖ = 1.
It should be noted that if P is a minimal projection in a von Neumann algebra
N , then the corner algebra is one-dimensional, i.e., PN P = CP . Moreover, all
minimal projections are equivalent.

According to the properties of the lattice of projections we mention next some
large subclasses of factors.

Definition 2 Let N be a factor and P(N ) its lattice of projections.

(i) N is said to be of type I if P(N ) contains a minimal nonzero projection.
(ii) N is said to be of type III if P(N ) contains no nonzero finite projection.

Type I I I factors show, roughly speaking, the highest degree of infiniteness. In
fact, for this class of algebras any nonzero projection admits the following halving
property (which can be understood as a negation of F2 in the linear context).

Lemma 1 Let N be a factor and P(N ) its lattice of projections. Then P ∈ P(N )

is infinite if and only if P admits the following decomposition

P = (P − Q) + Q for some Q ≤ P and P ∼ Q ∼ (P − Q) .

For simplicity we will focus in this article only on these two classes of factors.
Type I I factors (those having no minimal projections but having nonzero finite
projections) are also important in describing certain aspects quantum theory (see,
e.g., [16, 17]).

14.3 Følner C*-Algebras

Motivated by the dichotomy amenable versus paradoxical in group theory we will
introduce in this section the class of Følner C*-algebras. These algebras correspond
to the amenable groups, in the sense of having a good internal approximation in terms
of matrices that have controlled growth with respect to the dynamics given by the
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product. We will also define the notion of algebraic amenability and some relation
to the class of Følner C*-algebras. These ideas will be used in the next section.

For the next definition, recall that a tracial state on a C∗-algebraA is a positive and
normalized functional τ : A → C that satisfies the usual tracial property τ (AB) =
τ (BA) for any A, B ∈ A. In the next definition we specify the subclass of amenable
traces (see, e.g., [18, Chap. 6]).

Definition 3 Let A ⊂ B(H) be a unital and separable C*-algebra. A is called a
Følner C*-algebra if it has an amenable trace τ , i.e., a tracial state onA that extends
to a state ψ on B(H) that has A in its centralizer, i.e.,

τ = ψ|A and ψ(X A) = ψ(AX) , A ∈ A , X ∈ B(H) .

From this definition it follows immediately that any unital C∗-subalgebra of a
Følner C∗-algebra is again in this class and that any finite dimensional algebra is a
Følner C∗-algebra, since the usual normalized trace of a matrix will do.

Remark 2 The stateψ in the preceding definition is called hypertrace in the literature
and this class of algebras is also referred as weakly hypertracial (see [19] and ref-
erences therein). The preceding definition is equivalent to the intrinsic definition of
an abstract Følner C∗-algebraA in terms of a sequence of unital completely positive
linear maps into matrices ϕn : A → Mk(n) which are asymptotically multiplicative.
This approach shows explicitly the finite approximation scheme of this class of al-
gebras (cf., [20, Theorem 4.3]). Moreover, this class of algebras are also relevant in
problems of spectral approximation (cf., [21–24]).

We will conclude by introducing the notion of algebraically amenable algebras.
We will restrict to the case of subalgebras of C∗-algebras, but the definition and
results are true for arbitrary algebras over arbitrary fields (cf. [6, 11, 12]).

Definition 4 Let A ⊂ A be a *-subalgebra of a C∗-algebra A. We call A alge-
braically amenable if there is a sequence {Wk}∞k=1 of finite dimensional subspaces of
A satisfying

lim
k→∞

dim(AWk + Wk)

dim(Wk)
= 1 , A ∈ A .

Next we mention an important relation between algebraic amenability and the
class of Følner C∗-algebras. For a complete proof we refer to [7, Theorem 3.17].

Theorem 1 Let A ⊂ A be a dense *-subalgebra of a unital separable C∗-algebra
A. If A is algebraically amenable, then A is a Følner C∗-algebra.

14.4 Quantum Physics

In the mathematical description of a physical theory one needs to specify the set of
observables, the set of states and, possibly, the family of symmetries of the theory,
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typically described in terms of a group action. For a description of a quantum theory
(as opposed to a classical theory) one can use the language of non-commutative
operator algebras and their state space. Symmetries are then incorporated to this
setting via a representation of the corresponding group in terms of automorphisms
of the operator algebra. These representations are typically implemented in terms of
unitary representations of the group (see, e.g., [14, Chaps. 2 and 3] or [25, Part I]).
One of the conceptual advantages of (non-commutative) C*-algebras is the neat
distinction between the abstract algebra, whose self-adjoint elements correspond to
observables, and its state space and the corresponding representations on a concrete
Hilbert space. This point of view particularly pays off in Quantum Field Theory,
where there is an abundance of inequivalent representations associated with abstract
observables (cf. [26]; see also Sect. 14.4.3 below).

14.4.1 Type I Algebras and Quantum Mechanics

The most elementary example of a type I factor is B(H), whereH is a finite or (sep-
arable) infinite dimensional Hilbert space. Many situations in Quantum Mechanics
can be described in terms of this example. Pure states correspond in this context
to minimal projections and mixed states are described in terms of normalized and
positive trace class operators.

We begin by making precise the fact that B(H) is, in fact, the prototype of this
kind of factors. It is illustrative to give a sketch of the proof since it shows how the
minimality condition is used.

Proposition 1 Let N ⊂ B(H) be a factor of type I . Then there exist separable
Hilbert spacesK1 andK2 and a unitaryU : H → K1 ⊗ K2 withUNU ∗ = B(K1) ⊗
1.

Proof Let {Pj } j∈J ⊂ P(N ) be a maximal family of mutually orthogonal minimal
projections. Bymaximality it follows thatH ∼= ⊕

j∈J PjH.Moreover, byminimality
of projections, all Pi , Pj must be equivalent for any pair i, j ∈ J . Therefore, there are
partial isometries V1 j ∈ N with V1 j V ∗

1 j = P1 and V ∗
1 j V1 j = Pj , j ∈ J . This implies

that N is generated by the set {V1 j | j ∈ J } since we have

N � N =
∑
i, j∈J

Pi N Pj =
∑
i, j∈J

λi j V
∗
1i V1 j , (14.2)

where the coefficients λi j ∈ C are specified by the relation

V1i Pi N Pj V
∗
1 j ∈ P1N P1 = CP1 , (14.3)

which, again, uses the minimality of P1. In fact, note that

V1i Pi N PjV
∗
1 j = λi j P1 andhence Pi N Pj = λi j V

∗
1i P1V

∗
1 j = λi j V

∗
1i V1 j . (14.4)
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Finally, consider the discrete set J = {1, 2, . . . |J |} with |J | ∈ N ∪ {∞} and de-
fine the unitary map

U ∗ : �2(J , P1H) → H

by means of U ∗ξ := ∑
j V

∗
1 jξ j , where ξ = (ξ j )

|J |
j=1 ∈ �2(J , P1H). Using now the

equivalence �2(J , P1H) ∼= �2(J ) ⊗ P1H one can show that the algebra generated
by {UV1 jU ∗ | j ∈ J } is isomorphic to B(�2(J )) ⊗ 1, because

UV ∗
1iU

∗UV1 jU
∗ = UV ∗

1i V1 jU
∗ ∼= Ei j ⊗ 1

where {Ei j | i, j ∈ J } is a set of matrix units in �2(J ).

Remark 3 From the resultsmentioned inSect. 14.2 it is clear thatB(H)with dimH =
∞ is an infinite as well as properly infinite C*-algebra. Nevertheless, observe that the
structure of type I factors allows to have subalgebras of Følner type. For instance,
take two non-commuting range one projections P, Q ∈ B (H), the von Neumann
algebra generated by them will be finite-dimensional, and hence Følner. Note that
this reasoning is not possible in the context type I I I von Neumann algebras.

14.4.2 The CAR-Algebra

In this section we give a proof that the C∗-algebras associated to the canonical anti-
commutation relations (CAR-algebras) are, in fact, Følner C∗-algebras. We begin by
recalling its definition and some standard properties (see, e.g., [14, Sect. 5.2.2]).

Let h be a complex separable Hilbert space with scalar product 〈·, ·〉. We denote
by CAR(h) the algebraically unique C*-algebra generated by 1 and a( f ), f ∈ h,
such that the following relations hold:

(i) The map h � f �→ a( f ) is antilinear.
(ii) a( f1)a( f2) + a( f2)a( f1) = 0 , f1, f2 ∈ h .
(iii) a( f1)a( f2)∗ + a( f2)∗a( f1) = 〈 f1, f2〉1 , f1, f2 ∈ h .

The algebra CAR(h) is simple, has a unique tracial state and satisfies ‖a( f )‖ =
‖ f ‖ for any f ∈ h. In the proof of the next theorem we exploit the finite approxima-
tion structure of the CAR-algebra.

Proposition 2 Let h be a complex separable Hilbert space. Then CAR(h) is a Følner
C∗-algebra and its unique tracial state is amenable.

Proof If dim h = n < ∞, then CAR(h) ∼= M2n (C) and hence Følner because it is
finite dimensional. If dim h = ∞ we may describe the CAR-algebra as a uniformly
hyper-finite algebra of type 2∞ (see [13, III.5.4]). In fact, CAR(h) is the inductive
limit of finite-dimensional algebras An

∼= M2n (C) with injective embedding

An � A �→
(
A 0
0 A

)
∈ An+1 .
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Consider the *-algebra A := ∪∞
n=1An , which is dense in CAR(h). We will prove

that A is algebraically amenable (cf. Definition 4) and therefore, by Theorem 1, we
conclude that CAR(h) is a FølnerC∗-algebra.Define the finite dimensional subspaces
(in fact subalgebras) Wk := Ak , k ∈ N. Then, since any A ∈ A is contained in Ak0
for some k0 ∈ N we conclude that for any k ≥ k0 we have AWk ⊂ Wk , and therefore
dim(AWk + Wk) = dim(Wk) and

lim
k→∞

dim(AWk + Wk)

dim(Wk)
= 1 .

Finally, since CAR(h) has a unique tracial state it must be amenable.

14.4.3 Local Quantum Physics

In this subsectionwe address severalmanifestations of infinity that appear in quantum
field theory. For this analysis we use the axiomatic approach proposed by Haag and
Kastler in the sixties using the language of operator algebras (see, e.g., [27–30]),
usually known as Algebraic Quantum Field Theory or Local Quantum Physics. In
this formulation the observables become the primary objects of the theory and are
described by selfadjoint elements in an abstract C∗-algebra. Here one considers the
observables to be localized in spacetime, which, in this article, we restrict to be the
4-dimensional Minkowski space. The fundamental object of study is a net of von
Neumann algebras labeled by spacetime regions in R

4. Concretely, we consider the
index set

I := {O ⊂ R
4 | O open and bounded region in Minkowski space}

and a net of von Neumann algebras is denoted by

I � O �→ N (O) ⊂ B(H) .

Associated with this net we can define the global algebra byR :=
(

∪
O∈I

N (O)
)′′

.

We begin by recalling the axioms of the vacuum representation. The axioms spec-
ifying this representation of the net I � O �→ N (O) are physically motivated and
have physical and mathematical consequences. These rules formalize general prin-
ciples of relativistic quantum mechanics like, e.g., Poincaré covariance or causality.
Characteristic for the vacuum state is its invariance under the Poincaré group and the
(relativistic) spectrum condition.

(A1) Isotony: If O1 ⊂ O2 then N (O1) ⊂ N (O2).

(A2) Additivity: If O = ∪ jOi then N (O) =
(

∪ j N (O j )
)′′
.
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(A2′) Weak additivity: For each O0 ∈ K we have
(

∪
a∈R4

N (a + O0)
)′′ = R.

(A3) Causality: If O1 ⊥ O2 (i.e., O1 and O2 are causally disjoint), then N (O1) ⊂
N (O2)

′.
(A4) Covariance: There is a strongly continuous unitary representation of the uni-

versal cover of the proper orthocronous Poincaré group G := R
4

� SL(2, C),
U : G → U(H) such that

N (gO) = αg(N (O)) = U (g)N (O)U (g)−1 , αg ∈ AutR , g ∈ G .

(A5) Spectrum condition: The spectrum of the generators of the space-time transla-
tions is contained in the closed forward light cone, i.e.,

σ
(
U (R4)

)
⊂ V+ .

(A6) Existence of a vacuum vector: There exists a unit vector � ∈ H (called the
vacuum vector) such that

(
∪O∈K N (O)

)
� is dense in H and U (g)� = � , g ∈ G .

For concrete examples of nets satisfying these axioms we refer to the free-net
construction in [31, 32] as well as references therein. An immediate and surprising
consequence of this set of axioms is the so-called Reeh-Schlieder Theorem.

Theorem 2 Let I � O �→ N (O) ⊂ B(H) be a net satisfying the axioms of the vac-
uum representation. For every nonempty regionO ∈ I the vacuum vector� is cyclic
and separating forN (O), i.e., the setN (O)� ⊂ H is dense inH and, for any local
operator N ∈ N (O), one has that N� = 0 implies N = 0.

This result implies, in particular, that any nonzero local projection in N (O) has
(for any nonempty O ∈ I) a nonzero expectation value in the vacuum. Moreover,
this result also shows that the vacuum in quantum field theory is entangled for any
pair of local algebrasN (O1),N (O2)withO1 ⊥ O2. We refer, e.g., to [27, Sect. 1.3]
for a complete proof of the Reeh-Schlieder theorem which makes explicit use of
the covariance axiom, weak additivity and the spectrum condition. For additional
motivation, results and references see [33, 34].

The next result is known as Wightman’s inequality. Let O1,O2 ∈ I and denote
by O1 � O2 if O1 ⊂ O2 and the distance of O1 to the boundary of O2 is positive,
i.e., dist(O1, ∂O2) > 0.

Theorem 3 Let I � O �→ N (O) ⊂ B(H) be a net satisfying the axioms of the vac-
uum representation and such that the global algebraR is non-Abelian. Then for any
O1 � O2 we have that N (O1) � N (O2).
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This result implies that for each O ∈ I the local algebras N (O) are necessarily
infinite dimensional, since forO1 � O2 we must have dimCN (O1) < dimCN (O2).
A complete proof of Wightman’s inequality can be found in [27, Sect. 1.4] which
uses explicitly the isotony axiom as well as covariance and weak additivity.

Local algebras are not only infinite dimensional, they are typically type I I I
(showing the highest degree of infiniteness). The change in relativistic quantum
mechanics to a net of algebras localized in spacetime regionsO ∈ I forces the radical
change to type I I I (as opposed to a type I description in quantum mechanics). For
specific regions such as a space-like wedge or for theories which, in addition, have
conformal covariance, it can be even shown that the local algebras correspond to the
unique hyperfinite type I I I1 factor (see, e.g., [28, Sect. V.6] for details).

We conclude this sectionmentioningBorchers propertywhich implies that, gener-
ically, local algebras are almost type I I I . This property, which is strongly based on
the positivity of the energy, is enough in many applications. For a proof we refer to
[27, Sects. 1.11 and 1.12]. Before stating the next result, recall from Sect. 14.2 that
for a von Neumann algebra is of type I I I all nonzero projections are equivalent to 1.

Theorem 4 Let I � O �→ N (O) ⊂ B(H) be a net satisfying the axioms of the
vacuum representation, with unique vacuum vector �. Assume O1,O2 ∈ I satisfy
O1 � O2 and that there exists anO ∈ J withO ⊂ O⊥

1 ∩ O2. Then for any nonzero
projection P ∈ N (O1) we have

P ∼ 1 mod N (O2) .

As an application of type I I I structure appearing in quantum field theory we
refer, e.g., to the explanation of Fermi’s two atom system (cf. [35, 36]).

14.4.4 The Theory of Superselection Sectors

The theory of superselection sectors allows froman analysis of a physicallymotivated
family of states to understand three central aspects in elementary particle physics:
the composition of charges, the classification of particle statistics and the charge
conjugation. In this final subsection we will mention briefly the role that Cuntz
algebras play in this frame, confirming again the importance of properly infinite C*-
algebras in quantum field theory. The theory of superselection sectors as stated by
the Doplicher-Haag-Roberts (DHR) selection criterion [28, 37, 38], is formulated in
the frame of local quantum physics and led to a profound body of work, culminating
in the general Doplicher-Roberts (DR) duality theory for compact groups [39, 40].

The DHR criterion selects a distinguished class of “admissible” representations
of a quasilocal algebraA of observables, which has trivial centerZ := Z(A) = C1.
This class of representations specifies a so-called DR-category T , which is a full
subcategory of the category of endomorphisms of the C*-algebra A. Furthermore,
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from this endomorphism categoryT theDR-analysis constructs a C*-algebraF ⊃ A
together with a compact group action α : G � g → αg ∈ Aut(F) such that:

• A is the fixed point algebra of this action;
• T coincides with the category of all “canonical endomorphisms” ofA, associated
with the pair {F ,αG}.
Physically,F is identified as a field algebra and G with a global gauge group of the

system. The pair {F ,αG}, which we call Hilbert C*-system (see below for a precise
definition), is uniquely determined by T up to isomorphisms. Conversely, {F ,αG}
determines uniquely its category of all canonical endomorphisms. Therefore {T ,A}
can be seen as the abstract side of the representation category of a compact group,
while {F ,αG} corresponds to the concrete side of the representation category of G,
and, roughly, any irreducible representations of G is explicitly realized within the
Hilbert C*-system. One can state the equivalence of the “selection principle", given
by T and the “symmetry principle", given by the compact group G. This is one of the
crucial theorems of the Doplicher-Roberts theory (see also [27, 30, 41] for additional
results and motivation).

We conclude explaining the structure of Hilbert C*-systems. These are, roughly
speaking, a very special type of C*-dynamical system (F ,αG) that, in addition,
contain the information of the representation category of the compact group G. We
denote the dual object of G by Ĝ, which is defined as the set of (unitary) equivalence
classes of continuous irreducible unitary representations of G (on complex separable
Hilbert spaces). A Hilbert space H ⊂ F , where F is a unital C*-algebra, is called
algebraic if the scalar product 〈·, ·〉 of H is given by 〈A, B〉1 := A∗B for A, B ∈
H. Henceforth, we consider only finite-dimensional algebraic Hilbert spaces. The
support of H is defined by suppH := ∑d

j=1 � j�
∗
j , where {� j

∣∣ j = 1, . . . , d} is
any orthonormal basis of H. We consider here only algebraic Hilbert space H with
suppH = 1. For any D ∈ Ĝ consider the following projection on F

�D(·) :=
∫
G

χD(g)αg(·) dg ,

where χD is the modified character of the class D, i.e., χD(g) := dim(D) Tr(D(g)).
The subspaces �D , D ∈ Ĝ, are called spectral subspaces of F . Note that if one
chooses the trivial representation ι ∈ Ĝ, then the corresponding spectral subspace is
the fixed point algebra

�ι(F) := {A ∈ F | αg(A) = A , g ∈ G} ,

which in our context turns out to coincide with the C*-algebra A.

Definition 5 A C*-dynamical {F ,αG} with a compact group G is called a Hilbert
C*-system if for each D ∈ Ĝ there is an algebraic Hilbert spaceHD ⊂ �DF , such
that αG acts invariantly onHD, and the unitary representation αG |HD is in the equiv-
alence class D ∈ Ĝ.
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Note that any algebraic Hilbert space HD , D ∈ Ĝ, generates a Cuntz algebra On

with n = dim D which are all subalgebras of the field algebra F . Moreover, any
algebraic Hilbert space HD specifies a canonical endomorphism of the fixed point
algebra by

ρD(A) =
n∑

i=1

�i A�∗
i ,

where {�i

∣∣ i = 1, . . . , n} is any orthonormal basis of HD . Since the suppHD = 1
the canonical endomorphisms are also unital, i.e., ρD(1) = 1.

Remark 4 In the DR-theory the center Z of the C*-algebra A plays a special role.
If A corresponds to the inductive limit of a net of local C*-algebras indexed by
open and bounded regions of Minkowski space, then the triviality of the center of
A is a consequence of standard assumptions on the net of local C*-algebras. But, in
general, the C*-algebra appearing in the DR-theorem does not need to be a quasilo-
cal algebra and, in fact, one has to assume explicitly that Z = C1 in this context
(see [39, Theorem 6.1]). Therefore from a systematical point of view it is natural to
study the properties and structural modifications of this rich theory if one assumes
the presence of a nontrivial center Z ⊃ C1. From a physical point of view one can
interpret the elements of the center Z of A as classical observables contained in the
quasilocal algebra. Nevertheless the effect of the presence of classical observables
in superselection theory requires a more careful analysis of the corresponding fun-
damental axioms. We refer to [42–44] for an analysis of the DR-duality theory in
the case the relative commutant of the corresponding Hilbert C*-system satisfies the
following minimality condition:

A′ ∩ F = Z .

Concrete realization of these systems in terms of Cuntz-Pimsner algebras, a class of
properly infinite C*-algebras generalizing Cuntz algebras, can be found in [45].
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Chapter 15
Poisson-Nijenhuis Manifolds,
Classical Yang-Baxter Equations,
and Frobenius Algebras

F. Magri and T. Marsico

Abstract In this paper we describe in detail the class of linear Poisson-Nijenhuis
manifolds. We prove that they are related to Drinfeld’s bialgebras, classical Yang-
Baxter equations, and noncommutative Frobenius algebras.

15.1 Introduction

Poisson-Nijenhuis manifolds are a particular class of bihamiltonian manifolds. They
are characterized by the property of being endowedwith two tensor fieldsP: T ∗M →
TM and N : TM → TM , of type (2, 0) and (1, 1) respectively, which verify the
following four conditions:

i. P is a Poisson bivector: this means that P is skew-symmetric, and that the value
P(dF, dG) of the bivector P on the differentials dF and dG of the functions F
and G is a Poisson bracket.

ii. N is a Nijenhuis tensor: this means that the Nijenhuis’s torsion of N vanishes.
iii. The product of N and P is a second bivector Q = NP.
iv. For any vector field X and any 1-form α the Poisson bivector P and the Nijenhuis

tensor N verify the compatibility condition

[NX ,Pα] − NLieX (P)α + P(LieX (N ∗)α − LieNX (α)) = 0.

The third and fourth conditions entail that Q is a Poisson bivector. By the second
condition this Poisson bivector is compatible with P. Therefore the manifold M is
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endowed with a pair of compatible Poisson bivectors, and hence is a bihamiltonian
manifold. These claims have been proved in [5].

In this paper we investigate in detail the class of linear Poisson-Nijenhuis struc-
tures over a vector space V . We proceed in three steps:

i. In Sect. 15.2 we spell out the above four conditions in the linear setting char-
acteristic of the present paper, and we prove that a vector space endowed with
a linear Poisson-Nijenhuis structure is necessarily a Drinfeld’s bialgebra. This
means that both the vector space V and its dual V ∗ are Lie algebras, and that
these Lie algebras are compatible in the sense of Drinfeld [2]. As is known, the
concept of Drinfeld’s bialgebra is a cornerstone of the theory of Lie-Poisson
groups. Therefore one may consider this result as a geometrical introduction to
Lie-Poisson groups from the viewpoint of bihamiltonian geometry.

ii. In Sect. 15.3 we assume that a certain cocycle in the Chevalley cohomology of
the Lie algebra defined over V ∗ is a coboundary. In this way we introduce the
subclass of exact linear Poisson-Nijenhuis manifolds.We show that the potential
of the coboundary, which is a linear skew-symmetric map E: V → V ∗, verifies
necessarily the classical modified Yang-Baxter equation or, in a more geometric
language, that the Schouten bracket [E,E] of this potential is ad-invariant with
respect to the adjoint action of the Lie algebra of V ∗. As is known, the classical
Yang-Baxter equation has been used by Sklyanin and Semenov Tian Shansky to
build the R-matrix approach to soliton equations [7, 8]. They have shown that
the R-matrix is a basic tool to give soliton equations a Lax formulation. Thus, in
the above result one may foresee a bridge between the Lax formulation and the
bihamiltonian formulation of soliton equations.

iii. In Sect. 15.4, finally, the consequences of the vanishing of the torsion of N are
systematically worked out. We prove that this condition obliges V ∗ to be an
associative algebra. Under a mild additional assumption, we also show that V ∗
is, more precisely, a non-commutative Frobenius algebra.

By reverting the perspective, onemay start from the algebraic standpoint of Frobe-
nius algebras and construct a linear Poisson-Nijenhuis manifolds according to the
following procedure.

Let V ∗ be a Frobenius algebra, that is a vector space endowedwith amultiplication
x · y and with a non-degenerate metric g: V ∗ × V ∗ → R satisfying the conditions:

i. The product is associative: (x · y) · z = x · (y · z)
ii. The metric is invariant with respect to the product: g(x · y, z) = g(x, y · z)
for all x, y, z ∈ V ∗. We denote by [x, y] = x · y − y · x the commutator associated
with the multiplication x · y, by ξ and η arbitrary elements of the dual space V , and
by ad∗

x ξ the coadjoint action of the Lie algebra (V ∗, [x, y]) on its dual V . We denote
as well by S: V → V ∗ the contravariant metric tensor associated with g. We assume
to know a solution of the classical modified Yang-Baxter equation associated with
the commutator [x, y] and with the contravariant metric tensor S, that is a linear
skew-symmetric maps E: V → V ∗ satisfying the equation
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E(ad∗
Eξ η − ad∗

Eηξ) − [Eξ,Eη] = [Sξ, Sη]

for any choice of elements ξ and η in V . Furthermore, we denote by ρ(x, y) =
x · y + y · x the anti-commutator associated with the multiplication x · y on V ∗, and
by τ : V × V → V its pull-back from V ∗ to V through the metric g:

ρ(Sξ, Sη) = Sτ(ξ, η) for all ξ, η ∈ V .

We use these multilinear maps to construct two tensor fields P and N on V . The
Poisson bivector is defined by

Pvx = ad∗
xv

The Nijenhuis tensor is defined by

Nvξ = ad∗
Eξv + τ(v, ξ),

where v, ξ , and x should be regarded as an arbitrary point, a constant vector field,
and a constant 1-form on the manifold V .

Proposition 1 The vector space V endowed with the above tensor fields is an exact
linear Poisson-Nijenhuis manifold.

This proposition will be proved in Sect. 15.4.
The purpose of the present paper is to convince the reader that the elaborate

algebraic conditions gathered in the last Proposition are simply a specific form of the
four geometric conditions listed at the beginning of this section, defining the class
of Poisson-Nijenhuis manifolds. As a rule, when one assumes that the manifold is
a vector space and the tensor fields depend linearly on the point of the manifold,
the geometric conditions of the bihamiltonian theory (formulated in the geometric
language of vector fields, 1-forms, commutators of vector fields and Lie derivatives)
lose their standard appearance and become a set of algebraic conditions, very often
having a Lie-theoretical meaning. It is this mechanism of conversion from geometry
to algebra which allows to pass from the theory of Poisson-Nijenhuis manifolds to
Drinfed’s bialgebras, classical Yang-Baxter equations, and Frobenius algebras. This
passage was already outlined in Chap.4 of the Ph.D. thesis of Tiziana Marsico [6].
This paper is a new and up-to-date version of some results presented in that thesis.

15.2 Linear Poisson-Nijenhuis Manifolds

Let the manifold M be a vector space V . Let us denote by v a point of M , and by
(ξ, η) and (x, y) arbitrary constant vector fields and constant 1-forms on M , that is
elements of V and V ∗ respectively. Since the tangent space TvM and the cotangent
space T ∗

v M at the point v of M are naturally identified with V and V ∗ respectively,
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the Poisson bivector P: T ∗M → TM and the Nijenhuis tensor field N : TM → TM
are a pair of maps

P: M × V ∗ → V

N : M × V → V

which are linear in the second entry.

Definition 1 The Poisson-Nijenhuis structure is linear if the above maps are linear
with respect to the first entry as well, that is if the corresponding tensor fields depend
linearly on the point of the manifold.

Our aim is to work out the restrictions imposed to these bilinear maps by the four
conditions defining a Poisson-Nijenhuis manifold. The answer is well-known in the
case of a Poisson bivector. A classical result of the theory of Poisson manifolds tells
us that the bivector P is a linear Poisson tensor if and only if V ∗ is a Lie algebra [4].
Let us denote by [x, y] its commutator. Then

Pv = ad∗
x v. (15.1)

A similar representation holds for the linear Nijenhuis tensor N . To make explicit
this representation, it is suitable to split N into its symmetric and skew-symmetric
parts by writing

Nvξ = 1/2[v, ξ ] + 1/2σ(v, ξ), (15.2)

where σ : V × V → V is a symmetric bilinear map with values in V . The reason
to denote the skew-symmetric part of N by the symbol 1/2[v, ξ ] is due to a well-
known property of Nijenhuis tensor fields. It is known that each Nijenhuis tensor
field defines a new Lie bracket (the deformed bracket)

[[X ,Y ]]N = [[NX ,Y ]] + [[X ,NY ]] − N [[X ,Y ]]

on the algebra of vector fields on themanifoldM . In the case of an affinemanifold, the
deformed bracket can be restricted to the subalgebra of constant vector fields , giving
rise to a Lie bracket on V . Here, for clarity, we have used the symbol [[X ,Y ]] to
denote the commutator of vector fields onM (instead of the standard symbol [X ,Y ] )
in order to distinguish the commutator [[ξ, η]] of ξ and η, viewed as constant vector
fields on M , from the commutator [ξ, η] of ξ and η seen as elements of the Lie
algebra V . A simple calculation based on the identities

[[ξ, η]] = 0

[[ξ,Nvη]] = N (ξ, η)

shows that the restriction of the deformed bracket on constant vector fields coincides
with the skew-symmetric part of N :
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[[ξ, η]]N = [ξ, η]. (15.3)

Therefore, ifM is a linear Poisson-Nijenhuis manifold, both V and V ∗ are endowed
with the structure of a Lie algebra: the commutators [x, y] on V ∗ and [ξ, η] on V
coincide with the skew-symmetric parts of P and N respectively. The role of the
symmetric part σ of N will be identified later on, in Sect. 15.4, by exploiting the
following three Lemmas, each spelling out the implications of one of the conditions
listed at the beginning of the paper, defining the class of Poisson-Nijenhuismanifolds.

Lemma 1 The linear tensor fieldN on the vector spaceM has vanishingNijenhuis’s
torsion if and only if its skew-symmetric part verifies the Jacobi’s condition

[[ξ, η], θ ] + [[η, θ ], ξ ] + [[θ, ξ ], η] = 0 (15.4)

and its symmetric part verifies the quadratic condition
(
σ
(
σ(ξ, η), θ) − σ

(
σ(ξ, θ), η

) − [ξ, [η, θ ]]
)

+
(
σ(adθ ξ, η) + σ(ξ, adθη) − adθσ (ξ, η)

)

−
(
σ(adηξ, θ) + σ(ξ, adηθ) − adησ (ξ, θ)

)
= 0

(15.5)

Proof Recall that the vanishing of the torsion of N on a manifold M requires that
the equation

[[NX ,NY ]] − N ([[NX ,Y ]] + [[X ,NY ]]) − N [[X ,Y ]]) = 0

be satisfied for any pair of vector fields X and Y on M . On constant vector fields ξ

and η

[[Nvξ,Nvη]] = N (N (v, ξ), η) − N (N (v, η), ξ),

and therefore

[[Nξ,Nη]] = 1

4
[[v, ξ ], η] + 1

4
[σ(v, ξ), η] + 1

4
σ([v, ξ ], η) + 1

4
σ(σ(v, ξ), η)

−1

4
[[v, η], ξ ] − 1

4
[σ(v, η), ξ ] − 1

4
σ([v, η], ξ) − 1

4
σ(σ(v, η), ξ).

Since

Nv[[ξ, η]]N = 1

2
[v, [ξ, η]] + 1

2
σ(v, [ξ, η]).

one readily arrives to the condition
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([[v, ξ ], η] + [[η, v], ξ ] + [[ξ, η], v])

+ (
adξ σ (v, η) − σ(adξv, η) − σ(v, [ξ, η])

− adησ (v, ξ) + σ(adηv, ξ) + σ(v, [η, ξ ])+
+ σ(σ(v, ξ), η) − σ(σ(v, η), ξ) + [[ξ, η], v]) = 0.

To complete the proof, it is now enough to notice that the two brackets in this expres-
sion must vanish separately since they behave differently under the permutation of
the arguments. The vanishing of the totally skew-symmetric part give the Jacobi’s
condition on [ξ, η]. The vanishing of the other bracket gives the condition on the
symmetric part σ stated in the Lemma.

Lemma 2 The linear tensor field N on the vector space M verifies the differential
compatibility condition with the linear Poisson bivector P if and only if its skew-
symmetric part verifies the condition

[ad∗
xξ, η]N + [ξ, ad∗

xη]N − ad∗
x [ξ, η]N = ad∗

ad∗
ξ x

η − ad∗
ad∗

ηx
ξ (15.6)

and its symmetric part verifies the condition

ad∗
xσ(ξ, η) − σ(ad∗

xξ, η) − σ(ξ, ad∗
xη) = ad∗

ad∗
ξ x

η + ad∗
ad∗

ηx
ξ. (15.7)

Proof Recall that the differential compatibility condition requires that the equation

[[NX ,Pα]] − NLieX (P)α + P(LieX (N ∗)α − LieNX (α)) = 0

be satisfied for any vector field X and any 1-form α on M , where the symbol LieX
denotes the Lie derivative along X . To evaluate this expression, it is suitable to use
the identity

〈Y ,LieX (N ∗)α − LieNX (α)〉 = 〈[[NX ,Y ]] + [[X ,NY ]] − N [[X ,Y ]], α〉

where 〈, 〉 is the pairing among vector fields and 1-forms on the manifold M . On a
constant vector field ξ and a constant 1-forms x this identity gives

Lieξ (N
∗)x − LieNξ (x) = −ad∗

ξx (15.8)

where the generator ad∗
ξ of the coadjoint action of V on V ∗ is defined, as usual, by

the identity
〈ad∗

ξx, η〉 = −〈x, adξ η〉 = −〈x, [ξ, η]〉.

Since
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Lieξ (P)x = ad∗
xξ (15.9)

and
2[[Nξ,Px]] = ad∗

x([v, ξ ] + σ(v, ξ)) − [ad∗
xv, ξ ] − σ(ad∗

xv, ξ)

one may readily verify that the compatibility condition becomes

([ad∗
xv, ξ ] + [v, adxξ ] − ad∗

x [v, ξ ] + ad∗
ad∗

ξ x
v − ad∗

ad∗
v x

ξ
)+

+(
σ(ad∗

xv, ξ) + σ(v, ad∗
xξ) − ad∗

xσ(v, ξ) + ad∗
ad∗

ξ x
v + ad∗

ad∗
v x

ξ
) = 0.

To complete the proof, it is now enough to notice that the two brackets in this
expression must vanish separately, since the first bracket is skew-symmetric while
the second bracket is symmetric in the permutation of the arguments v and ξ .

Lemma 3 The algebraic compatibility condition NP = PN ∗ is automatically veri-
fied in view of the previous compatibility condition. Hence it does not introduce any
additional restrictions on N.

Proof First notice the simple identity

2(NP)v(x) = [v, ad∗
xv] + σ(v, ad∗

xv).

Thus, NP = PN ∗ if and only if

〈y, [v, ad∗
xv] + σ(v, ad∗

xv)〉+
+ 〈x, [v, ad∗

yv] + σ(v, ad∗
yv)〉 = 0.

But (15.7) entails that

2〈y, σ (v, ad∗
xv)〉 = 〈[y, x], σ (v, v)〉 − 2〈y, ad∗

ad∗
v x
v〉.

Thus the condition becomes:

〈y, [v, ad∗
xv] − ad∗

ad∗
v x
v〉 + 〈x, [v, ad∗

yv] − ad∗
ad∗

v y
v〉 = 0.

Since
〈y, [v, ad∗

xv] − ad∗
ad∗

v x
v〉 = −〈ad∗

vy, ad
∗
xv〉 + 〈ad∗

vx, ad
∗
yv〉

one immediately realizes that the condition is automatically verified without any
additional condition on N .

For further convenience, we collect all the informations obtained so far in the
following Proposition.
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Proposition 2 A linear Poisson–Nijenhuis manifold is a pair of Lie algebras
(V, [ξ, η]) and (V ∗, [x, y]) together with a symmetric bilinear map σ : V × V → V
that satisfy the following three sets of conditions:

On [x, y]:

1. [x, y] = −[y, x]
2. [[x, y], z] + [[y, z], x] + [[z, x], y] = 0

On [ξ, η]:

3. [ξ, η] = −[η, ξ ]
4. [ξ, [η, θ ]] + [η, [θ, ξ ]] + [θ, [ξ, η]] = 0

5. [ad∗
xξ, η] + [ξ, ad∗

xη] − ad∗
x [ξ, η] = ad∗

ad∗
ξ x

η − ad∗
ad∗

ηx
ξ

On σ(ξ, η):

6. σ (ξ, η) = σ(η, ξ)

7. σ (σ (ξ, η), θ) − σ(σ(ξ, θ), η) − [ξ, [η, θ ]]
+ (σ (adθ ξ, η) + σ(ξ, adθη) − adθσ (ξ, η))+
− (σ (adηξ, θ) + σ(ξ, adηθ) − adησ (ξ, θ)) = 0

8. − σ(ad∗
xξ, η) − σ(ξ, ad∗

xη) + ad∗
xσ(ξ, η)

= ad∗
ad∗

ηx
ξ + ad∗

ad∗
ξ x

η

The Poisson bivector P is given by

Pvx = ad∗
xv

and the Nijenhuis tensor N by

Nvξ = 1

2
[v, ξ ] + 1

2
σ(v, ξ)

It may be noticed that the fifth condition means that the commutators [ξ, η] on V
and [x, y] on V ∗ satisfy the compatibility condition defining a Drinfeld’s bialgebra
[3]. It remains thus proved that

Corollary 1 A linear Poisson-Nijenhuis manifold is a Drinfeld’s bialgebra.
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15.3 Classical Yang-Baxter Equations

An interesting consequence of the previous Corollary is the appearance of the classi-
cal Yang-Baxter equations within the theory of linear Poisson-Nijenhuis manifold. In
this sectionwe tersely review a few points of the theory of these equations tomotivate
the introduction of the subclass of exact linear Poisson-Nijenhuis manifolds. It is for
this class of manifolds that we shall be able to establish a connection with Frobenius
algebras in the following section.

Let us assume that the manifold M is the dual of a Lie algebra to account for
the first two conditions listed above. In this way we fix the linear Poisson structure
of our manifold. We concentrate on the problem of defining a commutator [ξ, η] on
V satisfying the next three conditions (3–4–5). We notice (following the theory of
Drinfeld’s bialgebras) that the fifth condition means that the map ε: V ∗ → V ∗ ∧ V ∗
defined by

〈ξ, εx(η)〉 = 〈x, [ξ, η]〉 (15.10)

is a cocycle in the Chevalley cohomology of the Lie algebra structure of V ∗. The
simplest case is when ε is a coboundary. This happens if there exists a linear skew-
symmetric map E: V → V ∗ such that

[ξ, η] = ad∗
Eξ η − ad∗

Eηξ (15.11)

We shall assume this relation as the definition of the the commutator [ξ, η], and
we say that the corresponding linear Poisson-Nijenhuis structure is exact. With this
choice we satisfy the third and fifth conditions (for wathever choice of the potential
E of the coboundary ε). It remains to check the fourth condition, that is the Jacobi’s
identity. To discuss this condition, it is convenient to introduce the 2-form on V with
values in V ∗ defined by

[E,E](ξ, η) := E(ad∗
Eξ η − ad∗

Eηξ) − [Eξ,Eη].

It is the algebraic form of the Schouten bracket of the bivector E with itself. It is then
possible to show that the Jacobi’s identity is equivalent to the ad-invariance of this
bracket with respect to the adjoint action of the Lie algebra (V ∗, [x, y]). Explicitly
this means that the equation

adx([E,E](ξ, η)) = [E,E](ad∗
xξ, η) + [E,E](ξ, ad∗

xη) (15.12)

holds true for every x ∈ V ∗ and (ξ, η) in V . This condition is commonly referred to
as the generalized (classical) Yang-Baxter equation.

To proceed, it is convenient to further restrict the class of manifolds considered, in
order to simplify the form of thYang-Baxter equation.We require that the Lie algebra
(V ∗, [x, y]), defining the Poisson bivector, be endowed with an ad-invariant metric.
We denote by S: V → V ∗ the contravariant metric tensor, and we notice that S is
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a symmetric linear invertible map from V to V ∗ which satisfies the ad∗–invariance
condition

〈Sad∗
xξ, η〉 + 〈Sξ, ad∗

xη〉 = 0. (15.13)

A particular class of solutions of the generalized Yang-Baxter equation consists then
of the linear skew-symmetric maps E: V → V ∗ for which

[E,E](ξ, η) = [Sξ, Sη]. (15.14)

This equation is known as the modified Yang-Baxter equation (the classical Yang-
Baxter equation being simply the vanishing of the Schouten bracket). Owing to the
ad∗-invariance of the contravariant metric tensor the modified equation implies the
generalized one. The conclusion is that the solutions of the modified Yang-Baxter
equation allow to construct a Lie algebra structure on the dual space V satisfying
the third, fourth, and fifth conditions of the table written above. From a geometric
standpoint this means that the solutions of the modified classical Yang-Baxter equa-
tion define the skew-symmetric part of the linear Nijenhuis tensor to be coupled to
the Poisson bivector defined by (V ∗, [x, y]). In this way we have solved half of our
problem. It remains to characterize the symmetric part of N .

15.4 Frobenius Algebras

Before discussing the last three conditions (6–7–8) it is expedient to make a change
of variables. In place of the symmetric bilinear map σ(ξ, η), we introduce the new
symmetric bilinear map

τ(ξ, η) := σ(ξ, η) − (ad∗
Eξ η + ad∗

Eηξ)

which includes the potential E of the coboundary ε. The substitution of σ by τ allows
to write the Nijenhuis tensor in the form

Nvξ = ad∗
Eξv + 1

2
τ(ξ, η). (15.15)

At the same time it allows to simplify significantly the last two conditions (7–8).
With a little bit of work it is, indeed, possible to reduce these conditions to the form

ad∗
xτ(η, θ) = τ(ad∗

xη, θ) + τ(η, ad∗
xθ)

τ (τ (ξ, η), θ) − τ(τ (ξ, θ), η) = −ad∗
[E,E](η,θ)ξ

Let us consider first the second condition. Since E satisfies the modified Yang-Baxter
equation it takes the form
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τ(τ (ξ, η), θ) − τ(τ (ξ, θ), η) = −ad∗
[Sη,Sθ]ξ.

By means of the contravariant metric tensor S we can pull-back the bilinear map τ

from V to V ∗. Let us call ρ: V ∗ × V ∗ → V ∗ the pull-back of τ

ρ(Sξ, Sη) = Sτ(ξ, η).

Since the metric tensor is ad-invariant, the contravariant metric tensor verifies the
condition

Sad∗
yS

−1x + adyx = 0.

This property allows to eliminate the metric from the second condition. We are left
with the remarkable equation

ρ(ρ(x, y), z) − ρ(ρ(x, z), y) = [[y, z], x] (15.16)

Similarly the first condition can be reduced to the form

adxρ(y, z) = ρ(adxy, z) + ρ(y, adxz). (15.17)

In this way we have transformed conditions (7–8) on the symmetric part σ of
N , into a couple of conditions (15.16) and (15.17) pertaining to the Lie algebra
(V ∗, [x, y]). From the geometric standpoint this means that the compatibility con-
ditions between P and N , characterizing the class of Poisson-Nijenhuis manifolds,
impose a set of strong restrictions on the admissible linear Poisson bivectors. To
complete our path towards Frobenius algebras, it only remains to work out the conse-
quences of these restrictions. To this end, let us introduce on V ∗ the inner composition
law

2x · y = [x, y] + ρ(x, y). (15.18)

It is easily checked that this composition law is associative on account of conditions
(15.16) and (15.17):

(x · y) · z = x · (y · z). (15.19)

Hence an exact linear Poisson-Nijenhuis structure is necessarily defined on an asso-
ciative algebra.

Let us take this conclusion for granted, and let us try to reconstruct the whole
linear Poisson-Nijenhuis structure starting from the datum of an associative algebra
(V, x · y). For this, we have to run through all the previous steps in the reverse order.
First, we set

[x, y] = x · y − y · x (15.20)

ρ(x, y) = x · y + y · x. (15.21)
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The conditions (15.16) and (15.17) are automatically verified. Thus we have the
general form of the bilinear map ρ. To reconstruct τ we need, furthermore , the
ad∗- invariant contravariant metric S. For this reason, we require that the associative
algebra be endowedwith ametric which is invariant with respect to themultiplication
in the algebra. In thiswaywe fall over a Frobenius algebra. Finally, to reconstruct both
the symmetric part σ and the skew-symmetric part [ξ, η] of the Nijenhuis tensor field
we need a solution of the modified Yang-Baxter equation. It remains thus proved that
the problem of constructing an exact linear Poisson-Nijenhuis manifold on a vector
space is equivalent to the problem of finding the solutions of the modified Yang-
Baxter equation on a non-commutative Frobenius algebra, as claimed in Proposition
1. The proof of this Proposition is now complete.

15.5 Concluding Remarks

The paper has a rather limited and specific scope: to provide a geometric perspective
for the theory of classical Yang-Baxter equation to be contrasted with the commonly
accepted algebraic viewpoint. Accordingly many aspects of the theory have been left
in the shadow.Wewant brieflymention three of them. The first concerns the presence
of a spectral parameter in the Yang-Baxter equation [1, 8]. The role of this parameter
is unclear from the geometric standpoint, where a specific pair of tensor fields is con-
sidered instead of a family depending on a parameter. One possibility to introduce the
spectral parameter in the geometric approach is to look at linear Poisson-Nijenhuis
manifolds defined on loop-algebras. In this way the spectral parameter would be nat-
urally englobed into the theory as a constitutive element of the base manifoldM . The
suitability of a thorough study of this class of manifolds (from the geometric view-
point) is the first point we want to stress. The second question concerns the existence
of polynomial Poisson tensors of any order. Once a linear Poisson-Nijenhuis struc-
ture has been constructed on a vector space V , an infinite sequence of polynomial
Poisson bivectors NP,N 2P,N 3P, and so on, appears naturally within the geometric
approach. In the algebraic approach to the Yang-Baxter equations it is usual, instead,
to consider two Poisson bivectors but no more: one linear and one quadratic. Where
are the remaining Poisson bivectors in the algebraic approach? This is the second
question we want to point out. Finally, the third question concerns the Lax formula-
tion. It is a well known fact, inside the bihamiltonian approach to integrable systems,
that the Nijenhuis tensor enjoys the same isospectral properties of a Lax matrix. Its
spectrum remain invariant along the flow of the Hamiltonian dynamical systems that
are naturally defined on a Poisson-Nijenhuis manifold according to the standard pro-
cedures of bihamiltonian geometry. This occurrence suggests a possible connection
between the two concepts. Is it possible to foresee a relation between the Lax matrix
and the matrix representing the Nijenhuis tensor field N in some specific basis? This
question is completely open, as far as we know.
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Chapter 16
Hermite Polynomial Representation
of Qubit States in Quantum
Suprematism Picture

Margarita A. Man’ko and Vladimir I. Man’ko

Abstract Weconsider theHermite polynomial representation (H -representation) of
spin states for qubits and qudits in quantum suprematism picture, where the state ge-
ometry is illustrated by Triadas of Malevich’s squares. We obtain an explicit connec-
tion of the densitymatrices of qubit stateswith thewave functions of two-dimensional
harmonic oscillators and the probabilities identified with the states. We establish the
connection of optical tomographic-probability distributions describing the oscillator
states with qudit state tomograms.

16.1 Introduction

In quantummechanics, the system pure states are identified with the state vectors [1]
and the system mixed states, with density matrices or density operators [2, 3]. There
are different representations for the state density operators. For qubits, the density
matrices are usually parameterized byBloch vectors, and the states are identifiedwith
points in the Bloch ball [4–6]. There exists the Jordan–Schwinger map [7, 8] of the
matrix algebras, including the algebra of the SU (2) group, onto the oscillator creation
and annihilation operators. In view of this map for spin states which provide the basis
for irreducible representation of the algebra of the SU (2) group, one can describe all
the states by thewave functions of two-mode oscillators. Such construction called the
Hermite polynomial representation of spin states was proposed in [9]. Also recently
the new quantum suprematism approach to qubit states was developed, where the
states are identified with probabilities illustrated by Triadas of Malevich’s squares
on a plane [10–18].
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In this approach, the matrix elements of density N × N -matrices of qudit states
are explicitly expressed in terms of the probabilities of artificial (N 2 − 1) “classical”
coins to have positions “UP” or “DOWN.” Our aim in this paper is to demonstrate
explicitly the connection of different representations of qudit states, including H -
representation on the example of a qubit.

Also we employ the symplectic and optical tomographic probability representa-
tions [19] of oscillator’s states, where the oscillator states are identified with fair
probability distributions. In this context, we connect the quantum suprematism pic-
ture of qubit states with symplectic tomography of the oscillator states.

For qudit states, we obtain new entropic-information inequalities corresponding
to the subadditivity and strong subadditivity conditions for bipartite and tripartite
classical and quantum system states; see, for example, [20].

This paper is organized as follows.
In Sect. 16.2, we review the Jordan–Schwinger map. In Sect. 16.3, the spin

states are given by oscillator wave functions, and in Sect. 16.4 we describe the H -
representation of spin systems. We discuss the probabilities determining the qubit
states in the quantum suprematism representation in Sect. 16.5 and study an ex-
plicit relation of the H -representation with the quantum suprematism approach in
Sect. 16.6. Then, in Sect. 16.7, we develop theH -representation for qudits and derive
new entropic inequalities and relations forHermite polynomials. Finally, in Sect. 16.8
we present our conclusions and prospectives.

16.2 Jordan–Schwinger Map

In this section, we review the Jordan–Schwinger map of spin observables onto ope-
rator ρ̂ acting in the Hilbert space of a two-mode harmonic oscillator. The creation
a†k and annihilation ak operators of the oscillator satisfy the commutation relations

[
ak , a

†
j

]
= δkj,

[
ak , aj

] = 0, k, j = 1, 2. (16.1)

Given three 2×2-matrices Ajk , Bjk , and Cjk , such that [A,B] = C. We construct three
operators Â, B̂, and Ĉ, using the following explicit formulas:

Â =
2∑

j,k=1

(A)jk â
†
j âk , B̂ =

2∑
j,k=1

(B)jk â
†
j âk , Ĉ =

2∑
j,k=1

(C)jk â
†
j âk . (16.2)

One can check that operators Â, B̂, and Ĉ satisfy the commutation relation

[
Â, B̂

]
= Ĉ. (16.3)
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Thus, we constructed the map of matrices A, B, and C onto operators Â, B̂, and Ĉ
acting in the Hilbert space of the oscillator states.

If the matrices A, B, and C are the spin-1/2 generators,

A = (σx + iσy)/2, B = (σx − iσy)/2, C = σz/2, (16.4)

where σx, σy, and σz are Pauli matrices,

σx =
(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (16.5)

the operators Â, B̂, and Ĉ read

Â = â†1â2, B̂ = â†2â1, Ĉ = (â†1â1 − â†2â2)/2. (16.6)

In this case, their commutation relations provide known commutation relations of
spin operators Ŝ+ = â†1â2 and Ŝ− = â†2â1, such that Ŝ± = Ŝx ± iŜy and Ŝz = Ĉ, where
we assume the Planck constant � = 1,

[
Ŝx, Ŝy

]
= iSz,

[
Ŝy, Ŝz

]
= iSx,

[
Ŝz, Ŝx

]
= iSy. (16.7)

The Casimir operator Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z for the SU (2) group takes the form

Ŝ
2 = â†1â1 + â†2â2

2

(
â†1â1 + â†2â2

2
+ 1

)
. (16.8)

16.3 The Spin States in Terms of Oscillator’s Wave
Functions

The oscillator states | n1n2〉, where n1, n2 = 0, 1, 2, . . ., realize the basis of irre-
ducible representationof theSU (2)group for spin s = (n1 + n2)/2, s = 0, 1/2, 1, . . .
For spin s = 1/2, the basis vectors | 10〉 and | 01〉 provide the oscillator wave func-
tions

ψ1/2 1/2(x1, x2) = 〈x1x2 | 10〉 = √
2/π x1 exp

[−(x21 + x22)/2
]
, (16.9)

ψ1/2 −1/2(x1, x2) = 〈x1x2 | 01〉 = √
2/π x2 exp

[−(x21 + x22)/2
]
. (16.10)

For an arbitrary spin s, the wave functions ψsm(x1, x2); m = −s,−s + 1, . . . , s, cor-
responding to the oscillator states, read
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ψsm(x1, x2) = e−(x21+x22)/2

2s
√

π
· Hs+m(x1)Hs−m(x2)√

(s + m)!(s − m)! . (16.11)

The parity of the stateψsm(x1, x2) isP = (−1)2s. The qubit states are odd states. Here,
in (16.11),Hs+m(x1) and Hs−m(x2) are Hermite polynomials; they are determined by
the generating function series expansion

e−t2+2tx =
∞∑
n=0

tn

n! Hn(x). (16.12)

For pure states, the density operators acting in theHilbert space of the oscillator states
ρ̂sm =| sm〉〈sm | have the following matrix form in the position representation:

ρsm(x1, x2, x
′
1, x

′
2) = 〈x1, x2 | ρ̂sm | x′

1, x
′
2〉

= exp[−(x21 + x22 + x′2
1 + x′2

2)/2]
4sπ (s + m)!(s − m)! Hs+m(x1)Hs−m(x2)Hs+m(x′

1)Hs−m(x′
2). (16.13)

This matrix satisfies the normalization condition
∫

ρsm(x1, x2, x1, x2) dx1 dx2 = 1,

and the purity parameter μ̃ given by the integral

μ̃ =
∫

ψsm(x1, x2, x
′
1, x

′
2)ψsm(x′

1, x
′
2, x1, x2) dx1 dx2 dx

′
1 dx

′
2 (16.14)

is equal to the unity, i.e., μ̃ = 1.

16.4 H-Representation

In [9], the other representation for spin states was introduced using the standard
star-product formalism with quantizer–dequantizer operators [21–25]. For a given
density operator ρ̂(s) with matrix elements ρ

(s)
mm′ ; m,m′ = −s,−s + 1, . . . , s − 1, s,

where s = 0, 1/2, . . ., we construct a symbol of the operator w(x1, x2, θ), using the
dequantizer operator Û (x1, x2, θ); 0 ≤ θ ≤ 2π , namely,

w(x1, x2, θ) = Tr
(
ρ̂(s)Û (s)(x1, x2, θ)

)
, (16.15)

where the dequantizer operator reads

Û (s)(x1, x2, θ) =| x1, x2, θ〉〈x1, x2, θ |, (16.16)
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and the vector | x1, x2, θ〉 is given by the series

| x1, x2, θ〉 = e−(x21+x22)/2

2s
√

π

s∑
m=−1

eimθ Hs+m(x1)Hs−m(x2)√
(s − m)!(s + m)! | sm〉. (16.17)

The density operator ρ̂(s) is determined by symbols (16.15) through the quantizer
operator D̂(s)(x1, x2, θ) as follows:

ρ̂(s) =
∫ 2π

0
dθ

∫
dx1 dx2 w(x1, x2, θ) D̂(s)(x1, x2, θ), (16.18)

and the quantizer operator D̂(s)(x1, x2, θ) has the matrix elements

D(s)
mm′(x1, x2, θ) = 〈sm | D̂(s)(x1, x2, θ) | sm′〉 = ei(m−m′) θ

22s+1π

×
√

(s + m)!(s + m′)!(s − m)!(s − m′)!
(2s + m + m′)!(2s − m − m′)! H2s+m+m′(x1)H2s−m−m′(x2). (16.19)

The quantizer operator D̂(s)(x1, x2, θ) satisfies the equality

〈D̂〉〈D̂〉 = 〈D̂〉, (16.20)

where the mean value of the quantizer operator is determined by the symbol
wρ(x1, x2, θ) of an arbitrary pure-state density operator ρ̂ such that ρ̂2 = ρ̂, i.e.,

〈D̂〉 =
∫∫ 2π

0
D̂(s)(x1, x2, θ)wρ(x1, x2, θ) dx1 dx2 dθ, (16.21)

where wρ(x1, x2, θ) is the symbol of an arbitrary pure-state density operator ρ̂.

16.5 Qubit State

We consider the example of qubit state with the density matrix

ρ =
(

ρ1/2 1/2 ρ1/2 −1/2

ρ−1/2 1/2 ρ−1/2 −1/2

)
; (16.22)

the density operator ρ̂ of the state is represented by this matrix in the basis | m〉,
where m = ±1/2 is the spin-1/2 projection on the z axis, i.e., (σZ/2) | m〉 = m | m〉.
This density matrix in the introduced H -representation with quantizer operator D̂
in the basis (16.19) for spin s = 1/2 is expressed in terms of Hermite polynomials
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H1,2(x) as follows:

ρ1/2 1/2 =
∫ ∞

−∞

∫ 2π

0
w(x1, x2, θ)

H2(x1)

8π
dx1 dx2 dθ,

ρ1/2 −1/2 =
∫ ∞

−∞

∫ 2π

0
w(x1, x2, θ)

eiθ

4π
H1(x1)H1(x2) dx1 dx2 dθ,

(16.23)

ρ−1/2 1/2 =
∫ ∞

−∞

∫ 2π

0
w(x1, x2, θ)

e−iθ

4π
H1(x1)H1(x2) dx1 dx2 dθ,

ρ−1/2 −1/2 =
∫ ∞

−∞

∫ 2π

0
w(x1, x2, θ)

H2(x2)

8π
dx1 dx2 dθ,

where the Hermite polynomials H1(z) = 2 z and H2(z) = 4 z2 − 2.
For the symbol of the density operator, we introduce the notation w(x1, x2 | θ) ≡

w(x1, x2, θ). In theH -representation, the symbol of the density operator is determined
by the matrix elements ρmm′ (16.22); it reads

w(x1, x2 | θ) = e−(x21+x22)

2π

[
ρ1/2 1/2 H

2
1 (x1) + ρ−1/2 −1/2 H

2
1 (x2)

+(
ρ1/2 −1/2 e

−iθ + ρ−1/2 1/2 e
iθ
)
H1(x1) H1(x2)

]
. (16.24)

This function can be presented in the form

w(x1, x2 | θ) = 2e−(x21+x22)

π

[
ρ1/2 1/2 x

2
1 + ρ−1/2 −1/2 x

2
2

+ (
ρ1/2 −1/2 e

−iθ + ρ−1/2 1/2 e
iθ
)
x1 x2

]
. (16.25)

The function is nonnegative w(x1, x2 | θ) ≥ 0 and normalized for an arbitrary phase

θ , i.e.,
∫ ∞

−∞
w(x1, x2 | θ) dx1 dx2 = 1; it can be interpreted as the conditional prob-

ability density w(x1, x2, θ) ≡ w(x1, x2 | θ), and we call it the H -tomogram of the
qubit state (spin-1/2 state).

There exists the joint probability distribution of three random variables due to
Bayes’ formula [26]

W (x1, x2, θ) = w(x1, x2 | θ)Π(θ), (16.26)

where the probability density 1 ≥ Π(θ) ≥ 0 is an arbitrary nonnegative function

such that
∫ 2π

0
Π(θ) dθ = 1. We can choose this function as Π(θ) = (2π)−1.

In terms of the joint probability distribution W (x1, x2, θ), the density matrix is
reconstructed, in view of the formula
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ρ
(s=1/2)
mm′ =

∫ 2π

0

∫ ∞

−∞
W (x1, x2, θ) Dmm′(x1, x2, θ)∫

W (x1, x2, θ) dx1 dx2

dx1 dx2 dθ. (16.27)

In the explicit form, we have

D1/2 1/2(x1, x2, θ) = 2x21
π

e−(x21+x22), D1/2 −1/2(x1, x2, θ) = 2x1x2
π

e−(x21+x22−iθ),

(16.28)

D−1/2 1/2(x1, x2, θ) = 2x1x2
π

e−(x21+x22+iθ), D−1/2 −1/2(x1, x2, θ) = 2x22
π

e−(x22+x22).

Since w(x1, x2 | θ) is the conditional joint probability distribution of two random
variables, there exist two marginal probability distributions

P1(x1) =
∫

w(x1, x2 | θ) dx2, P2(x2) =
∫

w(x1, x2 | θ) dx1; (16.29)

they read

P1(x1) = 2e−x21√
π

[
ρ1/2 1/2x

2
1 + ρ−1/2 −1/2/2

]
,

(16.30)

P2(x2) = 2e−x22√
π

[
ρ−1/2 −1/2x

2
2 + ρ1/2 1/2/2

]
.

The dependence on the angle θ in the marginal distributions disappeared, since the
off-diagonal elements in (16.25) give zero contributions into (16.30).

Also the joint probability distributionW (x1, x2, θ) (16.26) determines themarginal
joint probability distribution of two random variables W (x1, x2) as follows:

W (x1, x2) =
∫ 2π

0
W (x1, x2, θ) dθ = 2e−(x21+x22)

π

[
ρ1/2 1/2 x

2
1 + ρ−1/2 −1/2 x

2
2

+ (
ρ1/2 −1/2 + ρ−1/2 1/2

) 〈cos θ〉 + i
(
ρ1/2 −1/2 + ρ−1/2 1/2

) 〈sin θ〉] , (16.31)

where

〈cos θ〉 =
∫ 2π

0
Π(θ) cos θ dθ, 〈sin θ〉 =

∫ 2π

0
Π(θ) sin θ dθ; (16.32)

for Π(θ) = 1/(2π), 〈cos θ〉 = 〈sin θ〉 = 0.
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16.6 Quantum Suprematism Representation
of Qubit States

In [10–12, 15–18], the quantum suprematism representation of qubit states was
investigated. This representation is based on the possibility to express the density

matrix of spin-1/2 states ρ =
(

ρ1/2 1/2 ρ1/2 −1/2

ρ−1/2 1/2 ρ−1/2 −1/2

)
in terms of three probabilities

of spin projections m = +1/2 onto the x, y, and z axes [27]. The density matrix
reads [10]

ρ =
(

p3 p1 − (1/2) − i(p2 − 1/2)
p1 − (1/2) + ip2 − 1 1 − p3

)
, (16.33)

where 1 ≥ p1, p2, p3 ≥ 0 are the probabilities of spin projectionsm = +1/2 onto the
x, y, and z axes, respectively. These probabilities satisfy the nonnegativity condition
of the density matrices of the form

(p1 − 1/2)2 + (p2 − 1/2)2 + (p3 − 1/2)2 ≤ 1/4; (16.34)

for pure states, this inequality converts to the equality

(p1 − 1/2)2 + (p2 − 1/2)2 = p3(1 − p3). (16.35)

The numbers p1, p2, and p3 determine the three simplexes, which form the sides of
equilateral triangle; the length of the triangle sides is equal to

√
2. On the sides of the

triangle, there are three pointsA1,A2, andA3, which provide the vertices of another
triangle; see Fig. 16.1.

There is the one-to-one correspondence of the density matrix (16.33) and the
triangle A1A2A3 with the sides of the length

	k = 2
[
1 + p2k − 2 pk − pk+1 + p2k+1 + pkpk+1

] ; k = 1, 2, 3; p4 ≡ p1.
(16.36)

Three squares (black, red, and white) with areas Sk = 	2k correspond to the density
matrix and they were called Triada of Malevich’s squares [10–12, 17]; the sum of
areas of the squares S(p1, p2, p3) = 	21 + 	22 + 	23 has the maximum and minimum
values; these values are Smin = 3/2 and Smax = 3 [17].

The minimum value corresponds to an equilateral triangle with vertices A1,A2,
and A3 and the side length 	 = √

2/2, and the maximum value corresponds to an
equilateral triangle with vertices A1,A2, and A3 and the side length 	 = 1; see
Fig. 16.1a. The illustration of the states by the triangle and Malevich’s squares ge-
ometry was called the quantum suprematism picture of spin states; see Fig. 16.1b.

The quantumness of states is described by the inequality constraint (16.34). If the
probabilities p1, p2, and p3 correspond to the statistics of three classical dihotomic
variables (three classical coin positions “UP” and “DOWN”), the maximum value
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Fig. 16.1 Equilateral
triangle constructed of three
simplexes and vertices A1,
A2, and A3 (a) and Triada of
Malevich’s squares
illustrated the qubit state (b)

of Malevich’s squares Scl
max = 6 since, in this case, the triangle A1A2A3 coincides

with the initial equilateral triangle with the side length equal to
√
2.

Thanks to the introduced H -representation of qubit state, there exists the map of
the qubit density matrix onto its H -tomographic symbol wp(x1, x2 | θ), where p =
(p1, p2, p3) is given by the conditional probability or the joint probability distribution
Wp(x1, x2, θ). We have the explicit relation of the probability vector p with H -
tomogram; it is

wp(x1, x2 | θ) = 2 e−(x21+x22)

π
[p3x21 + (1 − p3)x

2
2

+ {(p1 − (1/2) − i(p2 − 1/2)
)
e−iθ + (

p1 − (1/2) + i(p2 − 1/2)
)
eiθ }x1x2].

(16.37)
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For example, the H -tomogram of the pure state with the density matrix ρ =
(
1 0
0 0

)

reads

w(z)
p (x1, x2 | θ) = 2 e−(x21+x22)

π
x21, (16.38)

and the H -tomogram of the state with the density matrix ρ = 1

2

(
1 1
1 1

)
is

w(x)
p (x1, x2 | θ) = 2 e−(x21+x22)

π

(
x21 + x22

2
+ x1x2 cos θ

)
. (16.39)

The superposition principle of two pure states yields the nonlinear addition rule
of the probability distributions (16.38) and (16.39) analogous to the one considered
in [14, 15].

The mean value of an observable Â is defined by the formula

Tr
(
Âρ̂

)
=

∫∫ 2π

0
w(x1, x2 | θ)w(d)

A (x1, x2, θ) dx1 dx2 dθ, (16.40)

where the dual symbol [24, 28] of the observable Â is calculated, in view of the
quantizer D̂(x1, x2; θ),

w(d)
A (x1, x2, θ) = Tr

(
ÂD̂(x1, x2; θ)

)
. (16.41)

If the matrix Amm′ of the observable Â is given, the dual symbol reads

w(d)
A (x1, x2, θ) = 1

4π

{
A1/2 1/2[H2(x1)/2] + A1/2 −1/2e

iθH1(x1)H1(x2)

+A−1/2 1/2e
−iθH1(x1)H1(x2) + A−1/2 −1/2[H2(x2)/2]

}
. (16.42)

We point out that the dual symbol of the density operator ρ̂ is not a probability
distribution.

16.7 Generic Qudit State in the H-Representation

The tomogram w(s)(x1, x2 | θ) for an arbitrary spin-s state reads [9]

w(s)(x1, x2 | θ) = e−(x21+x22)

4sπ

s∑
m1,m2=−s

ρ(s)
m1m2

e−i(m1−m2)θ

×Hs+m1(x1)Hs+m2(x1)Hs−m1(x2)Hs−m2(x2)√
(s + m1)! (s + m2)! (s − m1)! (s − m2)! . (16.43)
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The joint probability distribution of three random variables

W (s)(x1, x2, θ) = w(s)(x1, x2 | θ)Π(θ), (16.44)

where 1 ≤ Π(θ) ≤ 0 and
∫ 2π

0
Π(θ) dθ = 1, provides three probability distributions

W12(x1, x2) =
∫ 2π

0
W (s)(x1, x2, θ) dθ, (16.45)

W23(x2, θ) =
∫

W (s)(x1, x2, θ) dx1, (16.46)

W2(x2) =
∫∫ 2π

0
W (s)(x1, x2, θ) dx1 dθ. (16.47)

These marginal probability distributions satisfy the strong subadditivity condition,
which is a new inequality depending on the matrix elements of the density matrix of
arbitrary spin states; it is

−
∫∫ 2π

0
W (s)(x1, x2, θ) lnW (s)(x1, x2, θ) dx1 dx2 dθ −

∫
W2(x2) lnW2(x2) dx2

≤ −
∫

W12(x1, x2) lnW12(x1, x2) dx1 dx2 −
∫∫ 2π

0
W23(x2, θ) lnW23(x2, θ) dx2 dθ.

(16.48)

This inequality is valid for an arbitrary probability distribution Π(θ), including
Π(θ) = (2π)−1.

The other new entropic inequality, namely, the subadditivity condition reads

−
∫∫ 2π

0
W (s)(x1, x2, θ) lnW (s)(x1, x2, θ) dx1 dx2 dθ

≤ −
∫

W (s)
1 (x1) lnW

(s)
1 (x1) dx1 −

∫∫ 2π

0
W (s)

23 (x2, θ) lnW (s)
23 (x2, θ) dx2 dθ,

(16.49)

where the marginal probability distribution W (s)
1 (x1) is

W (s)
1 (x1) =

∫∫ 2π

0
W (s)(x1, x2, θ) dx2 dθ. (16.50)

The case of equality in (16.49) corresponds to the absence of correlations of a random
variable x1 and a pair of two random variables x2 and θ .
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In the case of Π(θ) = (2π)−1, the marginal probability distribution W12(x1, x2)
has the form

W12(x1, x2) = e−(x21+x22)

4sπ

s∑
m−s

ρmm
H 2

s+m(x1)

(s + m)!
H 2

s−m(x2)

(s − m)! . (16.51)

This probability distribution of two random variables is expressed in terms of diag-
onal elements of the spin density matrix ρmm and optical tomogram of energy-level
states of two-mode harmonic oscillator. The symplectic tomogram of the two-mode
harmonic oscillator reads [19, 29, 30]

w(X1,X2 | μ1, ν1, μ2, ν2) = Tr
{ | n1n2〉〈n1n2 |

×δ
(
X1 − μ1q̂1 − ν1p̂1

)
δ
(
X2 − μ2q̂2 − ν2p̂2

) }
, (16.52)

where the energy levels En1n2 = (n1 + n2 + 1); n1, n2 = 0, 1, 2, . . ., and we assume
� = m = ω = 1. Also here, the operators q̂1, p̂1, q̂2, and p̂2 are the oscillator position
and momentum operators, respectively, and μ1, μ2, ν1, and ν2 are real parameters.

The symplectic tomogramof these states is expressed in terms of thewave function
ψn1n2(X1,X2) as follows:

wn1n2(X1,X2 | μ1, ν1, μ2, ν2)

= 1√
(μ2

1 + ν2
1 )(μ

2
2 + ν2

2 )

∣∣∣∣∣∣
ψn1n2

⎛
⎝ X1√

μ2
1 + ν2

1

,
X2√

μ2
2 + ν2

2

⎞
⎠

∣∣∣∣∣∣

2

. (16.53)

The optical tomogram can be obtained from (16.53) using the parameters μ1 =
cos θ1, ν1 = sin θ1 and μ2 = cos θ2, ν2 = sin θ2; it reads

wn1n2(X1,X2 | θ1, θ2) = Tr
{ | n1n2〉〈n1n2 | δ

(
X1 − q̂1 cos θ1 − p̂1 sin θ1

)

×δ
(
X2 − q̂2 cos θ2 − p̂2 sin θ2

) }
. (16.54)

In view of this, we are in the position to present the optical tomographic probability
distribution of the energy-level states in the explicit form:

wn1n2(X1,X2 | θ1, θ2) = e−(X 2
1 +X 2

2 )

π (2n1+n2n1!n2!) H
2
n1(X1)H

2
n2(X2). (16.55)

This tomographic probability distribution of two random oscillator positions X1 and
X2 does not depend on angles θ1 and θ2. One can see that the marginal probabil-
ity distributions W12(x1, x2) obtained from the H -tomogram of spin state has the
form of a sum of optical tomographic probability distributions of the energy-level
states of two-mode harmonic oscillator with coefficients equal to the probabilities of
spin projections m = −s,−s + 1, . . . , s on the z-axes of spin states with the density
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matrix ρ(s)
m1m2

. Thus, the Jordan–Schwinger map of spin states provides the possibil-
ity to connect the spin-tomography approach with oscillator tomograms by explicit
formulas.

The relations obtained can also be formulated as follows.
Themarginal probability distributionsW12(x1, x2)obtained from theH -tomogram

of spin state is equal to the mean value of “random” tomographic probability distri-
butions of two-mode harmonic oscillator states corresponding to the energy levels
En1n2 distributed according to the diagonal matrix elements of the spin-state density
matrix. Such kinds of correlations can be found also using the tomographic approach
to the field theory developed in [29, 30].

16.8 Conclusions

To conclude, we point out our main results presented in this paper.
We reviewed the Jordan–Schwinger map and the quantum suprematism approach

to illustrate the qubit states by Triadas of Malevich’s squares. Using the representa-
tion of qubit states in terms of Hermite polynomials and three probabilities of spin
projectionsm = +1/2 onto three perpendicular directions, we obtained new entropic
inequalities for the probabilities identified with qubit states.

We calculated the dual symbol of an arbitrary qubit observable in the H -
representation of the states and derived the expression for the means of observables
in an explicit form.

The approach to quantum observables considered in [31] as classical-like random
variables and the triangle geometry of the hydrogen atom [32, 33] associated with
the O(4, 2) group, using the quantum suprematism picture, can be applied to the
other vibrational systems, including nonlinear f -oscillators [34].

We dedicate this paper to Alberto Ibort, our big friend and collaborator in con-
nection with his 60th years birthday.

References

1. P. Dirac, The Principles of Quantum Mechanics (Oxford University Press, Oxford, 1930)
2. L. Landau, Das Dampfungsproblem in der Wellenmechanik. Z. Phys. 45, 430–441 (1927)
3. J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932)
4. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge

University Press, Cambridge, 2010)
5. I. Bengtsson, K. Zyczkowski, Geometry of Quantum States: An Introduction to Quantum En-

tanglement (Cambridge University Press, Cambridge, 2008)
6. J.F. Carinena, A. Ibort, G. Marmo, G. Morandi, Geometry from Dynamics, Classical and

Quantum (Springer, Berlin, 2015)
7. P. Jordan, Zusammenhang der symmetrischen und linearen Gruppen und das Mehrkorperprob-

lem. Z. Phys. 94, 531–535 (1935)



302 M. A. Man’ko and V. I. Man’ko

8. J. Schwinger, inQuantum Theory of Angular Momentum, ed. by L.C. Biedenharn, H. Van Dam
(Academic, 1965)

9. D.B. Lemeshevskiy, V.I. Man’ko, Hermite polynomial representation of the spin states. J. Russ.
Laser Res. 34, 175–184 (2013)

10. V.N. Chernega, O.V. Man’ko, V.I. Man’ko, Triangle geometry of the qubit state in the prob-
ability representation expressed in terms of the Triada of Malevich’s Squares. J. Russ. Laser
Res. 38, 141–149 (2017)

11. V.N. Chernega, O.V.Man’ko, V.I.Man’ko, Triangle geometry for qutrit states in the probability
representation. J. Russ. Laser Res. 38, 416–425 (2017)

12. V.N. Chernega, O.V. Man’ko, V.I. Man’ko, Probability representation of quantum observables
and quantum states. J. Russ. Laser Res. 38, 324–333 (2017)

13. V.N. Chernega, O.V. Man’ko, V.I. Man’ko, Quantum suprematism picture of Malevich’s
squares triada for spin states and the parametric oscillator evolution in the probability rep-
resentation of quantum mechanics. J. Phys. Conf. Ser. 1071, 012008 (2018)

14. V.N. Chernega, O.V. Man’ko, V.I. Man’ko, God plays coins or superposition principle for
classical probabilities in quantum suprematism representation of qubit states. J. Russ. Laser
Res. 39, 128–139 (2018)

15. M.A. Man’ko, V.I. Man’ko, From quantum carpets to quantum suprematism—The probability
representation of qudit states and hidden correlations. Phys. Scr. 93, 084002 (2018)

16. M.A. Man’ko, V.I. Man’ko, New entropic inequalities and hidden correlations in quantum
suprematism picture of qudit states. Entropy 20(9), 692 (2018)

17. J.A. Lopez-Saldivar, O. Castaños, E. Nahmad-Achar, R. López-Peña, M.A. Man’ko, V.I.
Man’ko, Geometry and entanglement of two-qubit states in the quantum probabilistic rep-
resentation. Entropy 20(9), 630 (2018)

18. M.A. Man’ko, J. Phys. Conf. Ser., 1071, conference 1, 012015 (2018)
19. S. Mancini, V.I. Man’ko, P. Tombesi, Symplectic tomography as classical approach to quantum

systems. Phys. Lett. A 213, 1–6 (1996)
20. V.N. Chernega, O.V.Man’ko, V.I.Man’ko, Inequality for densitymatrices of single qudit states.

J. Russ. Laser Res. 35, 457–461 (2014)
21. O.V. Man’ko, V.I. Man’ko, G. Marmo, Alternative commutation relations, star products and

tomography. J Phys. A Math. Gen. 35, 699–719 (2002)
22. A. Ibort, V.I. Man’ko, G. Marmo, A. Simoni, F. Ventriglia, An introduction to the tomographic

picture of quantum mechanics. Phys. Scr. 79, 065013 (2009)
23. A. Ibort, V.I. Man’ko, G. Marmo, A. Simoni, F. Ventriglia, A pedagogical presentation of a

C∗-algebraic approach to quantum tomography. Phys. Scr. 84, 065066 (2011)
24. M. Asorey, A. Ibort, G. Marmo, F. Ventriglia, Quantum tomography twenty years later. Phys.

Scr. 90, 074031 (2015)
25. F. Lizzi, P. Vitale, Matrix bases for star products: a review. SIGMA 10, 086 (2014)
26. A.N. Kolmogorov, Foundation of the Theory of Probability (Chelsea, New York, 1956)
27. V.I. Man’ko, G. Marmo, F. Ventriglia, P. Vitale, Metric on the space of quantum states from

relative entropy. Tomographic reconstruction. J. Phys. A 50, 335302 (2017)
28. O.V.Man’ko, V.I. Man’ko, G.Marmo, P. Vitale, Star products, duality and double Lie algebras.

Phys. Lett. A 360, 522–532 (2007)
29. V.I. Man’ko, L. Rosa, P. Vitale, Probability representation in quantum field theory. Phys. Lett.

B 439, 328–336 (1998)
30. A. Ibort, A. Lopez-Yela, V.I. Man’ko, G. Marmo, A. Simoni, E.C.G. Sudarshan, F. Ventriglia,

On the tomographic description of classical fields. Phys. Lett. A 376, 1417–1425 (2012)
31. V.N. Chernega, O.V. Man’ko, V.I. Man’ko, Correlations in a system of classical-like coins

simulating spin-1/2 states in the probability representation of quantum mechanics. Eur. Phys.
J. D 73, 10 (2019). https://doi.org/10.1140/epjd/e2018-90487-9

32. M.A. Man’ko, V.I. Man’ko, Triangle geometry of spin states and nonlinear superposition of
probabilities describing these states. J. Russ. Laser Res. 40, 6–18 (2019)

https://doi.org/10.1140/epjd/e2018-90487-9


16 Hermite Polynomial Representation of Qubit States … 303

33. I.Ya. Doskoch, Dynamical symmetry group O(4,2) of hydrogen atom energy spectrum and
weight diagram of the group irreducible representation. J. Russ. Laser Res. 40, 19 (2019)

34. V.I. Man’ko, G. Marmo, F. Zaccaria, f-Oscillators and nonlinear coherent states. Phys. Scr. 55,
528–541 (1997)



Chapter 17
On Sympletic Lifts of Actions
for Complete Lagrangian Fibrations

Juan Carlos Marrero and Edith Padrón

Abstract In this note we discuss symplectic lifts of actions for a complete
Lagrangian fibration. Firstly, we describe the symplectic cotangent lifts of a
G-action on a manifold Q in terms of 1-cocycles in the cohomology ofG induced by
the action with values in the space of closed 1-forms on Q. After this, we consider
the general case of complete Lagrangian fibrations.

Mathematics Subject Classification (2010) 53D05 · 53D12 · 70G45 · 70H15.

17.1 Introduction

A Lagrangian fibration π is a surjective submersion with total space a symplectic
manifold M and such that the fibers of π are Lagrangian submanifolds of M. It is
well-known that Lagrangian fibrations are closely related with the theory of Arnold-
Liouville of completely integrable systems [1, 2] and this is a good motivation for
the discussion of such objects. The typical example of a Lagrangian fibration is the
canonical projection from the cotangent bundle T ∗Q of a manifold Q over Q. This
Lagrangian fibration is complete because the vertical lift of every 1-form on Q is a
complete vector field on T ∗Q (see, for instance, [5] for the definition of the vertical
lift of a 1-form to the cotangent bundle).
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The vertical lift to the total space of an arbitrary Lagrangian fibrationπ of a 1-form
on the base space is also a well-defined vector field and, by analogy with the case of
the cotangent bundle, π is said to be complete if such vector fields are complete.

Every complete Lagrangian fibration π : M → Q defines a new complete La-
grangian fibration with total space the quotient T ∗Q/Λ and base space Q, where
Λ = ⋃

q∈Q Λq is a Lagrangian submanifold of T ∗Q and Λq is a discrete subgroup
of the additive group of T ∗

q Q. In fact, T ∗
q Q/Λq is (non-canonically) diffeomorphic

to the Lagrangian fiber π−1(q). However, M and T ∗Q/Λ are not, in general, glob-
ally isomorphic. Under a strong hyphothesis, the presence of a global Lagrangian
section of the fibration π : M → Q, one may prove that there exists a global fiber-
preserving symplectomorphism between M and T ∗Q/Λ. The Lagrangian fibration
π̃Q : T ∗Q/Λ → Q is called the symplectic reference of π : M → Q (for more de-
tails, see [4]).

On the other hand, it is well-known that the standard example of a sympletic
action on the cotangent bundle of a manifold Q is the cotangent lift of an action φ on
Q. This action is very interesting from a mathematical and physical point of view. In
fact, it plays an important role in the study of symmetric Hamiltonian systems (see,
for instance, [1, 6–8]).

The aim of this note is to discuss symplectic lifts of actions for complete La-
grangian fibrations. First of all, we consider the particular case when the Lagrangian
fibration is the standard projection πQ : T ∗Q → Q. In such a case, we prove that
every symplectic lift of a G-action φ on Q is the composition of the cotangent lift
of φ with a translation. This translation is given by a 1-cocycle in the cohomol-
ogy of G induced by φ with values in the space of closed 1-forms on Q. More-
over, the symplectic action is completely determined, up to isomorphism, by the
cohomology class of the 1-cocycle. In the general case of an arbitrary complete
Lagrangian fibration π : M → Q, we prove similar results using the symplectic
reference π̃Q : T ∗Q/Λ → Q of π : M → Q.

The note is structured as follows. In Sect. 17.2, we discuss the symplectic lifts of
actions for the standard Lagrangian fibration πQ : T ∗Q → Q and, in Sect. 17.3, we
obtain the corresponding results for an arbitrary complete Lagrangian fibration.

17.2 Symplectic Cotangent Lifts of Actions on a Manifold

Let Q be a manifold of dimension n. We denote by θQ the Liouville 1-form, by
ωQ = −dθQ the canonical symplectic structure on the cotangent bundle T ∗Q and
by πQ : T ∗Q → Q the corresponding projection of T ∗Q on Q.

In addition, we suppose that we have a left action φ : G × Q → Q of a Lie group
G on Q. Denote by T ∗φ : G × T ∗Q → T ∗Q the cotangent lift action given by

(T ∗φ)gαq := T ∗
φg(q)φg−1(αq), for g ∈ G and αq ∈ T ∗

q Q.
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The cotangent lift T ∗φ of the action φ : G × Q → Q is a fiberwise symplectic
action, i.e.

πQ ◦ (T ∗φ)g = φg ◦ πQ, and (T ∗φ)∗gωQ = ωQ, for all g ∈ G.

Now, we ask about if it is possible to consider other symplectic actions on
(T ∗Q, ωQ) which fiber on φ.

It is well-known that a diffeomorphism F : T ∗Q → T ∗Q on T ∗Q preserves the
Liouville 1-form θQ if and only if there is a diffeomorphim f : Q → Q such that
F = T ∗ f (see Proposition 6.3.2 in [7]). So, if F is a fiber-preserving diffeomorphism
then F is the identity.

Moreover, we may prove the following result.

Proposition 1 Let F : T ∗Q → T ∗Q be a diffeomorphism which is fibered over the
identity. The following statements are equivalent:

(i) F is symplectic with respect to the canonical symplectic structure ωQ on T ∗Q.
(ii) There exists a unique closed 1-formα on Q such that F is just the fiber translation

tα : T ∗Q → T ∗Q by α, that is,

tα(γq) = γq + α(q), for all γq ∈ T ∗
q Q.

Proof Suppose that F is the fiber translation tα by a 1-form α on Q. Then, a direct
proof using local coordinates allows to obtain the following formula

F∗ωQ = t∗αωQ = ωQ − π∗
Q(dα). (17.1)

Thus, if α is closed,
F∗ωQ = ωQ .

Conversely, if (i) is satisfied, we can consider a 1-form α ∈ Ω1(Q) given by

α(q) = F(γq) − γq ,

where γq is an arbitrary element of T ∗
q Q. We will see that, for each q ∈ Q, this

definition does not depend on the choice of γq ∈ T ∗
q Q, or equivalently, the linear

map Tγq (F − idT ∗Q) is null on vertical vectors. Note that, since F is fibered over the
identity, the map F − idT ∗Q is well-defined.

Let λ be a 1-form on Q, then its vertical lift Xπ∗
Qλ is a vector field on T ∗Q which

is characterized in terms of the canonical sympletic structure on T ∗Q as follows (see
[5])

iXπ∗
Qλ

ωQ = π∗
Qλ. (17.2)

In fact, we have that (see [5])



308 J. C. Marrero and E. Padrón

Xπ∗
Qλ(βq) = d

dt |t=0
(βq + tλ(q)) for βq ∈ T ∗

q Q. (17.3)

This implies that the vertical bundle VβqπQ of πQ at the point βq ∈ T ∗
q Q is

VβqπQ = {Xπ∗
Qλ(βq)/λ ∈ Ω1(Q)}.

Moreover, if f is a fiberwise linear function on T ∗Q then there exists a vector
field Y on Q such that f = Ŷ , that is,

f (βq) =< βq ,Y (q) >, for βq ∈ T ∗
q Q, (17.4)

and one may prove that
Xπ∗

Qλ(Ŷ ) = λ(Y ) ◦ πQ . (17.5)

Now, from (17.2) and using that F is symplectic, we have that

iXπ∗
Qλ
F∗(ωQ) = iXπ∗

Qλ
ωQ = π∗

Qλ = (πQ ◦ F)∗λ = F∗(π∗
Qλ) = F∗(iXπ∗

Qλ
ωQ).

As a consequence, using the non-degeneracy of ωQ , we deduce that

Tγq F(Xπ∗
Qλ(γq)) = Xπ∗

Qλ(F(γq)) for all γq ∈ T ∗
q Q. (17.6)

On the other hand, since πQ ◦ F = πQ then Tγq (F − idT ∗Q)(Xπ∗
Qλ(γq)) is a

vertical vector, so it is characterized by its value on fiberwise linear functions
f ∈ C∞(T ∗Q). Thus, using (17.5) and (17.6), we have that

Tγq (F − idT ∗Q)(Xπ∗
Qλ(γq))( f ) = Xπ∗

Qλ(F(γq))( f ) − Xπ∗
Qλ(γq)( f ) = 0,

which proves the proposition.

Now, suppose that we have an arbitrary symplectic actionΦ : G × T ∗Q → T ∗Q
such that projects on an action φ : Q → Q, i.e. the following diagram commutes

T ∗Q

πQ

Φg
T ∗Q

πQ

Q
φg

Q

and Φ∗
g (ωQ) = ωQ, for all g ∈ G. We ask about how are these symplectic actions

on T ∗Q. The following result gives an answer to this question.

Proposition 2 Let Φ : G × T ∗Q → T ∗Q be a symplectic action of a Lie group G
on (T ∗Q, ωQ) whose projection on Q is the action φ : G × Q → Q. Then, there
exists a differentiable map A : G × Q → T ∗Q such that
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1. A is fibered on Q, i.e. πQ ◦ A = pr2, where pr2 : G × Q → Q is the canonical
projection on the second factor.

2. For each g ∈ G, the 1-form Ag on Q is closed.
3. The action Φ is given by

Φg = (T ∗φ)g ◦ tA(g), for all g ∈ G. (17.7)

In particular, Φ is an affine action. Moreover, Φ is linear if and only if Φ is the
cotangent lift T ∗φ of φ.

Proof Let g be an element of the Lie groupG. Themap Fg = (T ∗φ)g−1 ◦ Φg satisfies
the hypothesis of Proposition 1. Thus, there exists a unique closed 1-form Ag on Q
such that Φg = (T ∗φ)g ◦ tA(g).

Therefore, if Ω1
c (Q) denotes the set of closed 1-forms on Q, every symplectic

fiberwise action is affine and it induces a map A : G → Ω1
c (Q) satisfying (17.7)

but, does each one of these maps induces an affine symplectic fiberwise action?
The following result give us the necessary and sufficient conditions on the map
A : G → Ω1

c (Q) to ensure that the map Φ A : G × T ∗Q → T ∗Q related with A by
(17.7) is a symplectic action. Previously, we introduce the following cohomology
complex induced by the action φ (see, for instance, [3]):

– A n-cochain is a map A : G× n. . . ×G → Ω1(Q) and Cn(G,Ω1(Q)) denotes the
set of the n-cochains. The 0-cochains are the 1-forms on Q.

– The coboundary operator δφ : Cn(G,Ω1(Q)) → Cn+1(G,Ω1(Q)) is given by

(δφ A)(g1, . . . , gn+1) = (−1)n+1A(g2, . . . , gn+1) +

+
n∑

i=1

(−1)n+i+1A(g1, . . . , gi−1, gi · gi+1, . . . , gn+1) +

+φ∗
gn+1

(A(g1, . . . , gn)).

Since the exterior differential is linear and commutes with the pull back, then the sets
Cn(G,Ω1

c (Q)) of the n-cochainswith values in the closed 1-forms on Q define a sub-
complex of (C•(G,Ω1(Q)), δφ).We denote by Hk(G, φ,Ω1

c (Q)) the corresponding
cohomology groups. We will see that the first cohomology group H 1(G, φ,Ω1

c (Q))

allows to classify the symplectic actions on T ∗Q which project on φ.

Theorem 1 Let φ : G × Q → Q be an action of the Lie group G on a manifold Q
and A be a map from G to Ω1(Q). Then,

1. The map Φ A : G × T ∗Q → T ∗Q given by Φ A
g = (T ∗φ)g ◦ tA(g) is an action if

and only if A is a one-cocycle in the cohomology complex (C•(G,Ω1(Q)), δφ).
2. Φ A is also symplectic if and only if A(g) is a closed 1-form on Q, for all g ∈ G,

i.e. A is a one-cocycle in the cohomology subcomplex (C•(G,Ω1
c (Q)), δφ).
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Proof The left action condition Φ A
gh = Φ A

g ◦ Φ A
h is equivalent to the relation

(T ∗φ)gh(A(gh)(q)) = (T ∗φ)gh(A(h)(q)) + (T ∗φ)g(A(g)(φh(q))).

If we apply (T ∗φ)(gh)−1 in the previous equality, then we have

A(gh) = A(h) + φ∗
h(A(g)), ∀ g, h ∈ G.

Note that this last condition implies that A(e) = 0, where e is the identity element
of G. Therefore, Φ A is an action if and only if A is a one-cocycle in the cohomology
complex (C•(G,Ω1(Q)), δφ).

On the other hand, using (17.1) and the symplectic character of the cotangent lift
action, we deduce

(Φ A
g )∗(ωQ) = t∗A(g)((T

∗φ)∗gωQ) = t∗A(g)ωQ

= ωQ − π∗
Q(d(A(g))).

Thus, Φ A
g is symplectic if and only if A(g) is a closed 1-form on Q, for all g ∈ G.

Note that the previous results give us a relation between symplectic actions on
(T ∗Q, ωQ)whose projection on Q isφ : G × Q → Q and one-cocycles in the coho-
mology complex (C•(G,Ω1

c (Q)), δφ).Using these facts, wewill see in the following
theorem that the first cohomology group H 1(G, φ,Ω1

c (Q)) of this complex allows
to give a classification of these symplectic actions on (T ∗Q, ωQ).

Theorem 2 Let φ : G × Q → Q be an action of a Lie group G on a mani-
fold Q. If A, B : G → Ω1

c (Q) are two one-cocycles in the cohomology complex
(C•(G,Ω1

c (Q)), δφ), and Φ A and ΦB their respective affine symplectic actions on
(T ∗Q, ωQ), then exists a symplectomorphism F : T ∗Q → T ∗Q such that

πQ ◦ F = πQ and (17.8)

F ◦ Φ A
g = ΦB

g ◦ F, for all g ∈ G (17.9)

if and only if [A] = [B] ∈ H 1(G, φ,Ω1
c (Q)).

Proof Suppose that F : T ∗Q → T ∗Q is a symplectomorphismwhich satisfies (17.8)
and (17.9). Then, using Proposition 1, we deduce that there exists a closed 1-form α

on Q such that F = tα . Since tα ◦ Φ A
g = ΦB

g ◦ tα , we have that

(T ∗φ)g(γq + A(g)(q) + α(φg(q))) = (T ∗φ)g(γq + B(g)(q) + α(q)),

for all γq ∈ T ∗
q Q. Thus, we deduce

(A − B)(g) = α − φ∗
gα = δφ(−α)(g),

that is, [A] = [B].
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Conversely, if [A] = [B], then there exists a closed 1-form α on Q such that
(A − B)(g) = δφ(α)(g) = φ∗

gα − α. Thus, F = t−α satisfies the conditions of the
theorem.

Example 1 (The Heisenberg group) Let Q = IR3 ∼= IR2 × IR be the Heisenberg
group endowed with the group law

(x, y, t) · (x ′, y′, t ′) = (x + x ′, y + y′, t + t ′ + xy′), for all (x, y, t), (x ′, y′, t ′) ∈ IR3.

We consider the action φ : IR3 × IR3 → IR3 defined by the group operation. The
cotangent lift action T ∗φ is

(T ∗φ)(x0,y0,t0)(x, y, t, α1, α2, α3) = (x + x0, y + y0, t + t0 + x0y, α1, α2 − x0α3, α3).

Here we have identified T ∗IR3 ∼= IR6.

Let A : IR3 → Ω1
c (IR

3) be the one-cocycle

A(x0, y0, t0) = x20dy + 2x0dt, for all (x0, y0, t0) ∈ IR3.

Note that

A(x0 + x1, y0 + y1, t0 + t1 + x0y1) = A(x1, y1, t1) + φ∗
(x1,y1,t1)A(x0,y0,t0).

Suppose that A is a coboundary in the cohomogy complex (C•(IR3,Ω1
c (IR

3)), δφ).
Then there exists a closed 1-formα = α1dx + α2dy + α3dt such that A(x0, y0, t0) =
φ∗

(x0,y0,t0)
α − α for all (x0, y0, t0) ∈ IR3, i.e.

0 = α1 ◦ φ(x0,y0,t0) − α1,

x20 = α2 ◦ φ(x0,y0,t0) + x0α3 ◦ φ(x0,y0,t0) − α2,

2x0 = α3 ◦ φ(x0,y0,t0) − α3.

At the point (0, 0, 0) ∈ IR3 we have that

α1(x0, y0, t0) = α1(0, 0, 0),
α2(x0, y0, t0) = x20 − x0α3(0, 0, 0) + α2(0, 0, 0),
α3(x0, y0, t0) = 2x0 + α3(0, 0, 0).

On the other hand, since α is closed

∂α1

∂y
− ∂α2

∂x
= 0,

that is, 2x0 − α3(0, 0, 0) = 0 which it is not possible. Thus, [A] 
= 0.
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The new symplectic action on T ∗IR3 is

Φ(x0,y0,s0)(x, y, t, α1, α2, α3)

= (x + x0, y + y0, t + t0 + x0y, α1, α2 − x20 − x0α3, α3 + 2x0),

and (T ∗IR3, Φ) is not symplectomorphic to (T ∗IR3, T ∗φ).

17.3 Symplectic Lifts of Actions on a Complete
G-Lagrangian Fibration

The cotangent projection πQ : T ∗Q → Q of a manifold Q has a special property:
for all q ∈ Q, its fiber T ∗

q Q at q is a Lagrangian submanifold of T ∗Q, that is,
πQ : T ∗Q → Q is a Lagrangian fibration. In this section we will extend the previous
results to this kind of fibrations (with certain topological restrictions). In order to do
this, we recall some notions and properties about Lagrangian fibrations (for more
details, see [4]).

A fiber bundle π : M → Q, with total space a symplectic manifold (M, ω), is
called a Lagrangian fibration if its fiber π−1(q) is a Lagrangian submanifold of M,

for all q ∈ Q, that is,

ker Txπ = (ker Txπ)ω, for all x ∈ π−1(q), (17.10)

where (ker Txπ)ω = {v ∈ TxM/ωx (v, u) = 0 for all u ∈ ker Txπ} is the symplectic
orthogonal subspace of ker Txπ.

Consider (M, Q, π, ω) a Lagrangian fibration. Given a 1-form α on Q, denote by
Xπ∗α the vertical vector field on M which is characterized by the following condition

iXπ∗α
ω = π∗α. (17.11)

Note that (17.10) implies that Xπ∗α is a vertical vector field with respect to π (in
fact, using (17.10), we deduce that the vertical bundle to π is generated by the vector
fields Xπ∗α , with α a 1-form on Q). So, if FXπ∗α

t : M → M is the flow of Xπ∗α at
the time t , then π ◦ F

Xπ∗(α)

t = π and one can prove that

d

dt
[(FXπ∗α

t )∗(ω)] = (FXπ∗α

t )∗(LXπ∗α
ω) = (FXπ∗α

t )∗(π∗(dα)) = π∗(dα).

Therefore,
(FXπ∗α

t )∗ω = ω + tπ∗(dα). (17.12)
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We will say that the Lagrangian fibration (M, Q, π, ω) is complete if the vector
field Xπ∗α is complete, for all α ∈ Ω1(Q). In such a case, this vector field can be
integrated up to time 1 to give the map

μ : Ω1(Q) × M → M
(α, x) �→ FXπ∗α

1 (x).
(17.13)

In fact, one can check that (see [4])

– μ is an action: μ(α + β, x) = μ(α,μ(β, x)),
– μ is π -fibered: π(μ(α, x)) = π(x),
– μ(α, x) = μ(β, x) if α(π(x)) = β(π(x)),
– μ is transitive on the fibers: for all q ∈ Q, if x, x ′ ∈ π−1(q), there exists a 1-form

α ∈ Ω1(Q) such that μ(α, x) = x ′.

Therefore, for each q ∈ Q, the action μ induces a transitive action of the abelian
group T ∗

q Q on the fiber π−1(q)

μq : T ∗
q Q × π−1(q) → π−1(q), (αq , x) �→ μ(α, x), (17.14)

where α is a 1-form on Q such that its value at q is just αq . In general, the action
μq is not free. For this reason we consider the isotropy subgroup Λq of μq . More
explicitly,

Λq = {αq ∈ T ∗
q Q | μq(αq , x) = x ∀x ∈ π−1(q)}. (17.15)

It can be checked that Λq is a discrete subgroup of T ∗
q Q, T ∗

q Q/Λq is an abelian
group and Λ = ∪q∈QΛq is a Lagrangian submanifold of T ∗Q. In addition, we have
the corresponding free fibered action

μ̂ : T ∗Q/Λ × M → M.

On the other hand, π̃Q : T ∗Q/Λ → Q is a Lagrangian fibration with respect the
induced symplectic 2-form ω̃Q on the reduced space T ∗Q/Λ characterized by

pr∗ω̃Q = ωQ, (17.16)

where pr : T ∗Q → T ∗Q/Λ is the quotient projection. Thus, (T ∗Q/Λ, Q, π̃Q, ω̃Q)

is a complete Lagrangian fibration. Furthermore, if the fibers of π̃Q : T ∗Q/Λ → Q
are connected and compact, then they are isomorphic to the n-torus (for more details,
see [4]).

In the particular case of the Lagrangian fibration (T ∗Q, Q, πQ, ωQ), the action
(μQ)q : T ∗

q Q × T ∗
q Q → T ∗

q Q is the map (μQ)q(αq , βq) = αq + βq and Λq = 0.
For the complete Lagragian fibration (T ∗Q/Λ, Q, π̃Q, ω̃Q) deduced from a com-

plete Lagrangian fibration (M, Q, π, ω), the corresponding action is

(μ̃Q)q : T ∗
q Q × T ∗

q Q/Λq → T ∗
q Q/Λq , (μ̃Q)q(αq , [βq ]) = [αq + βq ], (17.17)
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and its isotropic subgroup is just Λq .

Now, we will characterize the symplectomorphisms on the fiber bundle π̃Q :
T ∗Q/Λ → Q. Previously, we recall the notion of a Lagrangian section of an ar-
bitrary Lagrangian fibration π : (M, ω) → Q like a section σ : Q → M of π such
that σ ∗ω = 0. In the particular case of the cotangent bundle πQ : (T ∗Q, ωQ) → Q,

a 1-form α is Lagrangian if and if it is closed, since α∗ωQ = −dα.

Proposition 3 Let (T ∗Q/Λ, Q, π̃Q, ω̃Q) be the symplectic reference of a complete

Lagrangian fibration (M, Q, π, ω). If F̃ : T ∗Q/Λ → T ∗Q/Λ is a diffeomorphism
such that π̃Q ◦ F̃ = π̃Q then the following statements are equivalent:

1. F̃ is a symplectomorphism, that is, F̃∗ω̃Q = ω̃Q .

2. There exists a Lagrangian section σ̃ : Q → T ∗Q/Λ of π̃Q such that F̃ = tσ̃ ,
where tσ̃ : T ∗Q/Λ → T ∗Q/Λ is the map given by

tσ̃ ([γq ]) = [γq ] + σ̃ (q), (17.18)

for all q ∈ Q.

Proof Suppose that F̃ = tσ̃ , with σ̃ a section of π̃Q : T ∗Q/Λ → Q. Then,

t∗σ̃ ω̃Q = ω̃Q + π̃∗
Q (̃σ ∗ω̃Q). (17.19)

In fact, for all γq ∈ T ∗
q Q, there exist a neighborhood U of q and a 1-form α : U →

T ∗U on U such that α(q) = γq and

pr ◦ α = σ̃|U , (17.20)

where pr : T ∗U → T ∗U/Λ|T ∗U is the corresponding projection. Then, we have that

pr ◦ tα = tσ̃|U ◦ pr. (17.21)

On the other hand, using (17.1) and (17.20), it follows that

t∗αωQ = ωQ − π∗
Q(dα) = pr∗(ω̃Q + π̃∗

Q (̃σ ∗ω̃Q)).

From this equality, (17.16) and (17.21), we deduce that (17.19) holds. Therefore, if
in addition, σ̃ is Lagrangian, F̃ = tσ̃ is symplectic.

Conversely, if F̃ : T ∗Q/Λ → T ∗Q/Λ is a symplectomorphism, we define the
section σ̃ : Q → T ∗Q/Λ of π̃Q : T ∗Q/Λ → Q by

σ̃ (q) = F̃([γq ]) − [γq ], with γq ∈ T ∗
q Q and q ∈ Q.

In order to prove that σ̃ is well defined, we will follow the proof of Proposition 1.
So, we will show that for each q ∈ Q, the section σ̃ doesn’t depend of the chosen
element [γq ] ∈ T ∗

q Q/Λq , or equivalently,
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T[γq ](F̃ − idT ∗Q/Λ)(v[γq ]) = 0 for all v[γq ] ∈ ker T[γq ]π̃Q .

Let λ be a 1-form on Q and X π̃∗
Qλ the vertical vector field on T ∗Q/Λ of λwith respect

to π̃Q, i.e.
iX π̃∗

Qλ
ω̃Q = π̃∗

Qλ. (17.22)

Note that
X π̃∗

Qλ([γq ]) = Tγq pr(Xπ∗
Qλ(γq)), with γq ∈ T ∗

q Q, (17.23)

where Xπ∗
Qλ(γq) is the vertical lift on T ∗Q of λwith respect to πQ : T ∗Q → Q [(see

(17.2)]. In fact, using (17.2), (17.16), (17.22) and the fact that π̃Q ◦ pr = πQ , we
have

iXπ∗
Qλ

(pr∗ω̃Q) = pr∗(iX π̃∗
Qλ

ω̃Q).

So, from the non-degeneration of ω̃Q, we deduce (17.23). It is clear that (17.23)
implies that the vertical vectors X π̃∗

Qλ([γq ]),with λ ∈ Ω1(Q), generate the subspace
ker T[γq ]π̃Q .

Now, using that F̃ is symplectic and the fact that π̃Q ◦ F̃ = π̃Q, we deduce

iX π̃∗
Qλ
F̃∗(ω̃Q) = iX π̃∗

Qλ
ω̃Q = π̃∗

Qλ = (π̃Q ◦ F̃)∗λ = F̃∗(π̃∗
Qλ) = F̃∗(iX π̃∗

Qλ
ω̃Q).

Then, again from the non-degeneration of ω̃Q ,

T[γq ] F̃(X π̃∗
Qλ([γq ])) = X π̃∗

Qλ(F̃([γq ])).

Therefore,

T[γq ](F̃ − idT ∗Q/Λ)(X π̃∗
Qλ([γq ]))( f̃ ) = X π̃∗

Qλ(F̃([γq ]))( f̃ )
−X π̃∗

Qλ([γq ])( f̃ ) = 0,
(17.24)

for all function f̃ : T ∗Q/Λ → IR such that f = f̃ ◦ pr is a linear function on T ∗Q.

Indeed, if Y is the vector field on Q associated with f defined in (17.4), then, using
(17.23), we deduce that

X π̃∗
Qλ([γq ])( f̃ ) =< λ(q),Y (q) >= X π̃∗

Qλ(F̃([γq ]))( f̃ ).

On the other hand, since π̃Q ◦ F̃ = π̃Q , then T[γq ](F̃ − I dT ∗Q/Λ)(X π̃∗
Qλ([γq ])) is

a vertical vector with respect π̃Q . In such a case, there is a vertical vector vγq ∈
ker TγqπQ such that

T[γq ](F̃ − I dT ∗Q/Λ)(X π̃∗
Qλ([γq ])) = Tγq pr(vγq ).
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From (17.24), we obtain that vγq ( f ) = 0 for all fiberwise linear function f : T ∗Q →
IR, which implies that vγq = 0 and, in consequence,

T[γq ](F̃ − I dT ∗Q/Λ)(X π̃∗
Qλ([γq ])) = 0.

If the complete Lagrangian fibration (M, Q, π, ω) has a global section σ : Q →
M then, using the actionμ,wecan build the followingfiber bundle isomorphism from
the canonical fibration π̃Q : T ∗Q/Λ → Q to the Lagrangian fibration π : M → Q
given by

ϕσ : T ∗Q/Λ → M[
αq

] �→ μq(αq , σ (q)).
(17.25)

Thismap is equivariant whenwe consider the additive action from T ∗Q over T ∗Q/Λ

and the action μ on M. Moreover, using (17.12), one can prove that (see [4])

ϕ∗
σω = ω̃Q + π̃∗

Q(σ ∗ω). (17.26)

Then, if σ is Lagrangian, ϕσ is a symplectomorphism between (T ∗Q/Λ, Q, π̃Q,

ω̃Q) and (M, Q, π, ω).

The existence of a global Lagrangian section depends only on the triviality of
Chern class of the fiber bundle π : M → B. In fact, in [4] it is proved the following
result.

Theorem 3 The following statements are equivalent:

1. There exists a (symplectic) fiber bundle isomorphism between M and T ∗Q/Λ.

2. There exists a global (Lagrangian) section σ : Q → M of the fiber bundle π :
M → Q.

3. The Chern class of the fiber bundle π : M → Q is null (and σ ∗ω is an exact
2-form on Q).

These results justify that the complete Lagrangian fibration (T ∗Q/Λ, Q, π̃Q, ω̃Q)

is called the symplectic reference or Jacobian Lagrangian fibration associated to the
complete Lagrangian fibration (M, Q, π, ω).

Using Proposition 3 for the symplectic reference of a complete Lagrangian fibra-
tion (M, Q, π, ω), we deduce the corresponding result.

Proposition 4 Let F̂ : M → M be diffeomorphism on a complete Lagrangian fibra-
tion (M, Q, π, ω) such that π ◦ F̂ = π . Then, the following statements are equiva-
lent:

1. F̂ is a symplectomorphism, that is, F̂∗ω = ω.

2. There exists a uniqueLagrangian section σ̃ : Q → T ∗Q/Λof the corresponding
symplectic reference (T ∗Q/Λ, Q, π̃Q, ω̃Q) of (M, Q, π, ω) such that

F̂(x) = μ̂(̃σ (π(x)), x), for all x ∈ M, (17.27)
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where μ̂ : T ∗Q/Λ × M → M is the free fiberedactiondeduced fromμ : T ∗Q ×
M → M given in (17.14).

Proof Suppose that (2) holds. Then we will prove

F̂∗ω = ω + π∗(̃σ ∗ω̃Q). (17.28)

In such a case, since σ̃ ∗ω̃Q = 0, then F̂ is symplectic.
Let x be an arbitrary point of M . Then, there exists an open neighborhood U

of q = π(x) and a local section σ : U → π−1(U ) of π such that the map ϕσ :
T ∗U/Λ|U → π−1(U ) defined as in (17.25) is a fiber bundle isomorphism and

ϕ∗
σω = ω̃Q + π̃∗

Q(σ ∗ω), (17.29)

[see (17.26)]. Denote by F̃ = ϕ−1
σ ◦ F̂ ◦ ϕσ . Then, for all q ′ ∈ U and αq ′ ∈ T ∗

q ′U,

μ̂(F̃([αq ′ ]), σ (q ′)) = ϕσ (F̃([αq ′ ])) = F̂(ϕσ ([αq ′ ]))
= μ̂(̃σ (π(ϕσ ([αq ′ ]))), ϕσ ([αq ′ ]))
= μ̂(̃σ (q ′), μ̂([αq ′ ], σ (q ′)) = μ̂(̃σ (q ′) + [αq ′ ], σ (q ′)).

Now, from the free character of the action μ̂ we deduce that F̃ = tσ̃|U and conse-
quently, using (17.19) and (17.29), we have that

F̂∗(ω) = (ϕ∗
σ )−1(F̃∗(ϕ∗

σω)) = (ϕ∗
σ )−1(F̃∗(ω̃Q + π̃∗

Q(σ ∗ω))

= (ϕ∗
σ )−1(ω̃Q + π̃∗

Q(σ ∗ω) + π̃∗
Q (̃σ ∗ω̃Q)) = ω + π∗(̃σ ∗ω̃Q).

Thus, (17.28) holds.
Conversely, if F̂ : M → M is a symplectomorphism, with π ◦ F̂ = π, we con-

sider the map S : M → T ∗Q/Λ characterized by

F̂(x) = μ̂(S(x), x).

In the following, we will prove that S is constant into π−1(q). In fact, if x ∈ π−1(q),

there exist an open neighborhood U of q and a local section σ : U → π−1(U ) of
π such that the map ϕσ : T ∗U/Λ|U → π−1(U ) defined by (17.25) is a fiber bundle
isomorphism and

ϕ∗
σω = ω̃Q + π̃∗

Q(σ ∗ω).

Then, using this relation and the fact that F̂ is symplectic, we obtain that the map
F̃ = ϕ−1

σ ◦ F̂ ◦ ϕσ is symplectic and π̃Q ◦ F̃ = π̃Q . Now, from Proposition 3, there
exists a Lagrangian section σ̃ : U → T ∗U/Λ|U of π̃Q such that F̃ = tσ̃ . In fact,
ϕσ ◦ σ̃ = σ. With a direct computation, we show that

μ̂(S(y), y) = F̂(y) = ϕσ (F̃(ϕ−1
σ (y))) = μ̂(̃σ (π(y)), μ̂(ϕ−1

σ (y), σ (π(y))))
= μ̂(̃σ (π(y)), ϕσ (ϕ−1

σ (y))) = μ̂(̃σ (π(y)), y),
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for all y ∈ π−1(U ). Thus, using the free character of the action μ̂, we deduce that
S|U = σ̃ ◦ π on U.

Since S is globally defined, this proves that the Lagrangian section σ̃ is also
globally defined and S = σ̃ ◦ π.

On the other hand, if σ̃ ′ : Q → T ∗Q/Λ is another Lagrangian section and

F̂(x) = μ̂(̃σ ′(π(x)), x), for all x ∈ M,

then, using the free character of the action μ̂, we conclude that σ̃ = σ̃ ′.

Now, suppose that for a fibration (M, Q, π), we have actions φ : G × Q → Q
and Φ : G × M → M of a Lie group G on Q and M respectively, such that π is
G-equivariant, i.e. the following diagram commutes

M

π

Φg
M

π

Q
φg

Q

for all g ∈ G. In such a case we say that (M, Q, π, φ,Φ) is a G-fibration.

Definition 1 Let (M, Q, π, ω) be a Labrangian fibration and Φ,φ be actions on M
and Q respectively, such that (M, Q, π, φ,Φ) is a G-fibration. Then (M, Q, π, ω,

φ,Φ) is a G-Lagrangian fibration if the action Φ is symplectic.

A first example of G-Lagrangian fibration is (T ∗Q, Q, πQ, ωQ, φ, T ∗φ) when
we consider an action φ : G × Q → Q of a Lie group G on the manifold Q.

Now, fix (M, Q, π, ω, φ,Φ) a completeG-Lagrangian fibration.We can consider
the action μ given by (17.13). Since Φg is symplectic, then, for all α ∈ Ω1(Q),

i(Φg)∗Xπ∗α
ω = (Φ∗

g−1)(iXπ∗α
ω) = (Φ∗

g−1)(π
∗α) = π∗(φ∗

g−1α),

where ((Φg)∗Xπ∗α)(x) = TΦg−1 (x)Φg(Xπ∗α(Φg−1(x))), for every x ∈ M. Therefore,

(TxΦg)(Xπ∗α(x)) = Xπ∗(φ∗
g−1α)(Φg(x)),

that is, Xπ∗α(x) = (TΦg(x)Φg−1)(Xπ∗(φ∗
g−1 (α))(Φg(x))). Hence, we obtain the G-

equivariance of the action μ, i.e.

μφg(q)((T
∗φ)gαq , Φg(x)) = Φg(μq(αq , x)), (17.30)

for all αq ∈ T ∗
q Q and x ∈ π−1(q). An important consequence of this fact is that the

Lagrangian submanifoldΛ is G-invariant when we consider the cotangent lift action
T ∗φ on T ∗Q. Therefore, the cotangent lifted action T ∗φ induces a G-action˜T ∗φ on
T ∗Q/Λ and (T ∗Q/Λ, Q, π̃Q, ω̃Q, φ,˜T ∗φ) is a G-Lagrangian fibration.



17 On Sympletic Lifts of Actions for Complete Lagrangian Fibrations 319

Let Φ̃ : G × T ∗Q/Λ → T ∗Q/Λbe another actiononT ∗Q/Λ such that (T ∗Q/Λ,

Q, π̃Q, ω̃Q, φ, Φ̃) is a G-Lagrangian fibration. From (17.30) for the corresponding
action μ̃Q , we have that

(˜T ∗φ)g([αq ]) + Φ̃g([βg]) = Φ̃g([αq + βq ]) (17.31)

for all αq , βq ∈ T ∗
q Q.

Then, we define the section Σ(g) : Q → T ∗Q/Λ of π̃Q : T ∗Q/Λ → Q as fol-
lows

Σ(g)(q) = (˜T ∗φ)g−1(Φ̃g([0q ])).

From (17.31), it follows that

Σ(g)(q) = (˜T ∗φ)g−1(Φ̃g([γq ]) − (˜T ∗φ)g([γq ])),
= (˜T ∗φ)g−1(Φ̃g([γq ])) − [γq ],

for γq ∈ T ∗
q Q, and thus, we obtain that

Φ̃g([γq ]) = (˜T ∗φ)g([γq ]) + (˜T ∗φ)g(Σ(g)(q)).

Therefore, since Φ̃ and˜T ∗φ are actions, we deduce that

Σ(gh) = Σ(h) + (˜T ∗φ)h−1 ◦ Σ(g) ◦ φh, (17.32)

for all g, h ∈ G. This condition means thatΣ : G → Sect(T ∗Q/Λ) is a one-cocycle
in the cohomology associated with the following complex:

– A n-cochain is a map Σ : G× n. . . ×G → Sect(T ∗Q/Λ). We denote by Cn(G,

Sect(T ∗Q/Λ)) the set of the n-cochains. The set of 0-cochains is Sect(T ∗Q/Λ).

– The coboundary operator

δφ : Cn(G,Sect(T ∗Q/Λ)) → Cn+1(G,Sect(T ∗Q/Λ))

is given by

δφΣ(g1, . . . , gn+1) = (−1)n+1Σ(g2, . . . , gn+1) +

+
n∑

i=1

(−1)n+i+1Σ(g1, . . . , gi−1, gi gi+1, . . . , gn+1) +

+(˜T ∗φ)g−1
n+1

◦ Σ(g1, . . . , gn) ◦ φgn+1 .

Denote by SectL(T ∗Q/Λ) the subspace of Lagrangian sections in the La-
grangian fibration π̃Q : (T ∗Q/Λ, ω̃Q) → Q. Since ˜T ∗φ is a symplectic action for
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(T ∗Q/Λ, ω̃Q), then C•(G,SectL(T ∗Q/Λ)) determines a subcomplex of (C•(G,

Sect(T ∗Q/Λ)), δφ).

In general, we have the following result.

Proposition 5 Let (M, Q, π, ω) be a complete Lagrangian fibration and φ : G ×
Q → Q be an action on Q.

1. If Φ1, Φ2 are two symplectic lifts of φ : G × Q → Q then, for all g ∈ G, there
exists a Lagrangian section Σ(g) : Q → T ∗Q/Λ of π̃Q : T ∗Q/Λ → Q such
that

Φ2
g(x) = Φ1

g(μ̂(Σ(g)(π(x)), x)), for x ∈ M, (17.33)

where μ̂ : T ∗Q/Λ × M → M is the free fibered action given in (17.14).
2. If (M, Q, π, ω, φ,Φ) is a G-Lagrangian fibration, forΣ : G → Sect(T ∗Q/Λ),

the map ΦΣ : G × M → M given by

ΦΣ
g (x) = Φg(μ̂(Σ(g)(π(x)), x)),

for x ∈ M, defines an action of G on M if and only if the mapΣ is a one-cocycle
in the cohomology complex (C•(G,Sect(T ∗Q/Λ)), δφ).

3. In the hypothesis of (2), the action ΦΣ is also symplectic if and only if the map
Σ is a one-cocycle in the cohomology subcomplex

(C•(G,SectL(T
∗Q/Λ)), δφ).

Proof (1) Consider, for all g ∈ G, the sympectomorphism F̂g : M → M given by
F̂g = Φ1

g−1 ◦ Φ2
g . Then, if we apply Proposition 4 to F̂g, we conclude that (17.33)

holds.
(2) The condition ΦΣ is an action is equivalent with the relation

Φh(μ̂(Σ(gh)(π(x)), x)) = μ̂(Σ(g)(φh(π(x))),Φh(μ̂(Σ(h)(π(x)), x))).

Now, from (17.30), we have that

μ̂((˜T ∗φ)h(Σ(gh)(π(x))),Φh(x)) =
μ̂(Σ(g)(φh(π(x))), μ̂((˜T ∗φ)h(Σ(h)(π(x))),Φh(x))) =
μ̂(Σ(g)(φh(π(x))) + (˜T ∗φ)h(Σ(h)(π(x))),Φh(x)).

Therefore, the free character of μ̂, implies that

Σ(gh) = Σ(h) + (˜T ∗φ)h−1 ◦ Σ(g) ◦ φh,

i.e. Σ is a one-cocyle for (C•(G,Sect(T ∗Q/Λ), δφ).

(3) Let Ĝg be the diffeomorphism given by
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Ĝg(x) = μ̂(Σ(π(x)), x), for x ∈ M.

Then, it is clear that
ΦΣ

g = Φg ◦ Ĝg.

This, using Proposition 4, implies that Σ(g) is a Lagrangian section for the fibra-
tion π̃Q : T ∗Q/Λ → Q.

Moreover, the cohomology H •(G, φ,SectL(T ∗Q/Λ)) of the complex

(C•((G,SectL(T
∗Q/Λ)), δφ)

classifies the symplectic actions on a complete Lagrangian fibration on Q whose
projection is a fixed action φ on Q.

Theorem 4 Let φ : G × Q → Q be an action of the Lie group G on a manifold
Q and (M, Q, π, ω) be a complete Lagrangian fibration on Q. Consider Σ1,Σ2 :
G → SectL(T ∗Q/Λ) two one-cocycles in the cohomology complex (C•(G,SectL
(T ∗Q/Λ)), δφ), and ΦΣ1

and ΦΣ2
their corresponding symplectic actions of G on

M. Then, there exists a symplectomorphism F̂ : M → M such that

π ◦ F̂ = π and (17.34)

F̂ ◦ ΦΣ1

g = ΦΣ2

g ◦ F̂, for all g ∈ G (17.35)

if and only if [Σ1] = [Σ2] ∈ H 1(G, φ,SectL(T ∗Q/Λ)).

Proof Suppose F̂ : M → M is a symplectomorphism and that (17.34) and (17.35)
hold. Then, the conditions of Proposition 4 work and therefore, there exists a La-
grangian section σ̃ : Q → T ∗Q/Λ of π̃Q such that F̂(x) = μ̂(̃σ (π(x)), x). Since
F̂ ◦ ΦΣ1

g = ΦΣ2

g ◦ F̂ , we have that

μ̂(̃σ (φg(π(x))),Φg(μ̂(Σ1(g)(π(x)), x))) = Φg(μ̂(Σ2(g)(π(x)), μ̂(̃σ (π(x)), x))

for all x ∈ M.

Thus, using (17.30), it follows that

μ̂(̃σ (φg(π(x))), μ̂((˜T ∗φ)g(Σ
1(g)(π(x))),Φg(x)) =

μ̂((˜T ∗φ)g(Σ
2(g)(π(x)) + σ̃ (π(x)),Φg(x))),

which implies that

μ̂(̃σ (φg(π(x))) + (˜T ∗φ)g(Σ
1(g)(π(x))),Φg(x)) =

μ̂((˜T ∗φ)g(Σ
2(g)(π(x)) + (˜T ∗φ)g (̃σ (π(x))),Φg(x)).

Therefore, since the action μ̂ is free, we deduce that
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Σ2(g) − Σ1(g) = (˜T ∗φ)g−1 ◦ σ̃ ◦ φg − σ̃ = δφ(−σ̃ )(g),

that is, [Σ1] = [Σ2].
Conversely, if [Σ1] = [Σ2], then there exists a Lagrangian section σ̃ of π̃Q such

that
Σ1(g) − Σ2(g) = δφ(̃σ )(g) = σ̃ − (˜T ∗φ)g−1 ◦ σ̃ ◦ φg.

Thus, the map F̂ : M → M given by

F̂(x) = μ̂(̃σ (π(x)), x), for x ∈ M,

satisfies the conditions of the theorem. Note that

F̂−1(y) = μ̂(−σ̃ (π(y)), y), with y ∈ M.

In the case of the symplectic reference associated to a complete G-Lagrangian
fibration (M, Q, π, ω, φ,Φ) we have

Corollary 1 Let (T ∗Q/Λ, Q, π̃Q, ω̃Q, φ,˜T ∗φ) be the G-symplectic reference of a
complete G-Lagrangian fibration (M, Q, π, ω, φ,Φ). Then:

1. Every symplectic action Φ : G × T ∗Q/Λ → T ∗Q/Λ which projects on φ is
given by

Φg = ˜(T ∗φ)g ◦ tΣ(g)

where Σ(g) : Q → T ∗Q/Λ is a section of π̃Q : T ∗Q/Λ → Q and tΣ(g) :
T ∗Q/Λ → T ∗Q/Λ is the translation tΣg ([γq ]) = [γq ] + Σ(g)(q).

2. IfΣ : G → Sect(T ∗Q/Λ) is a map then Φ̃Σ
g = (˜T ∗φ)g ◦ tΣ(g) defines an action

on T ∗Q/Λ if and only if the mapΣ is a one-cocycle in the cohomology complex
(C•((G,Sect(T ∗Q/Λ)), δφ).

3. Φ̃Σ
g defines a symplectic action if and only if the map Σ is a one-cocycle in the

cohomology complex (C•((G,SectL(T ∗Q/Λ)), δφ).

4. Consider Σ1,Σ2 : G → SectL(T ∗Q/Λ) two one-cocycles in the cohomology
complex (C•(G,SectL(T ∗Q/Λ)), δφ), and Φ̃Σ1

and Φ̃Σ2
their corresponding

symplectic actions on (T ∗Q/Λ, ω̃Q). Then, there exists a symplectomorphism
F̃ : T ∗Q/Λ → T ∗Q/Λ such that

π̃Q ◦ F̃ = π̃Q and
F̃ ◦ Φ̃Σ1

g = Φ̃Σ2

g ◦ F̃, for all g ∈ G

if and only if [Σ1] = [Σ2] ∈ H 1(G, φ,SectL(T ∗Q/Λ)).

Finally, another application of our results is related with magnetic cotangent bun-
dles.

Indeed, suppose that β is a closed 2-form on Q and consider the symplec-
tic structure on T ∗Q given by ωQ,β := ωQ + π∗

Qβ. Then, it is easy to prove that
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πQ : (T ∗Q, ωQ,β) → Q is a complete Lagrangian fibration. Moreover, in this case,
the Lagrangian submanifold Λ of T ∗Q is just the zero section and, thus, the sym-
plectic reference of πQ : (T ∗Q, ωQ,β) → Q is the standard canonical projection
πQ : (T ∗Q, ωQ) → Q.

On the other hand, if φ : G × Q → Q is an action of G on Q and g ∈ G then

(T ∗φ)∗g(ωQ,β) = ωQ + π∗
Q(φ∗

gβ).

So, if β isG-invariant, we deduce that the cotangent lift of φ is a symplectic action
for the total space of the complete Lagrangian fibration

πQ,β : (T ∗Q, ωQ,β) → Q.

Using the previous facts, Proposition 5 and Theorem 4, we deduce the following
result.

Corollary 2 Let φ : G × Q → Q be an action of the Lie group G on the manifold
Q and β be a closed 2-form which is G-invariant.

1. IfΦ : G × T ∗Q → T ∗Q is a symplectic action of a Lie groupG on (T ∗Q, ωQ +
π∗
Qβ) whose projection on Q is the action φ : G × Q → Q, then there exists a

differentiable map A : G × Q → T ∗Q such that

(a) A is fibered on Q, i.e. πQ ◦ A = pr2,
(b) For each g ∈ G, the 1-form Ag on Q is closed.
(c) The action Φ is given by

Φg = (T ∗φ)g ◦ tA(g), for all g ∈ G.

2. If A : G × Q → T ∗Q is a smooth map and Φ A : G × T ∗Q → T ∗Q is given
by Φ A

g = (T ∗φ)g ◦ tA(g) then Φ A is an action if and only if A is a one-cocycle
in the cohomology complex (C•(G,Ω1(Q)), δφ).

3. Φ A is also symplectic if and only if A(g) is a closed 1-form on Q, for all g ∈ G.
4. If A, B : G → Ω1

c (Q) are two one-cocycles in the cohomology complex (C•(G,

Ω1
c (Q)), δφ), and Φ A and ΦB their respective affine symplectic actions on

(T ∗Q, ωQ + π∗β), then exists a symplectomorphism F : T ∗Q → T ∗Q such
that

πQ ◦ F = πQ and
F ◦ Φ A

g = ΦB
g ◦ F, for all g ∈ G

if and only if [A] = [B] ∈ H 1(G, φ,Ω1
c (Q)).
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Chapter 18
Some Properties of Multisymplectic
Manifolds

Narciso Román-Roy

Abstract This lecture is devoted to review some of the main properties of multi-
symplectic geometry. In particular, after reminding the standard definition of mul-
tisymplectic manifold, we introduce its characteristic submanifolds, the canonical
models, and other relevant kinds of multisymplectic manifolds, such as those where
the existence of Darboux-type coordinates is assured. The Hamiltonian structures
that can be defined in these manifolds are also studied, as well as other important
properties, such as their invariant forms and the characterization by automorphisms.

18.1 Introduction

Although there are several geometrical models for describing classical field theories,
namely, polysymplectic, k-symplectic and k-cosymplecticmanifolds [12, 17, 22, 28,
29]; multisymplectic manifolds are the most general and complete tool for describ-
ing geometrically (covariant) first and higher-order field theories (see, for instance,
[1, 4, 8, 14, 16, 18, 20, 23, 27, 30, 32] and the references quoted on them). All of
these kinds of manifolds are generalizations of the concept of symplectic manifold,
which is used to describe geometrically mechanical (autonomous) systems.

This talk is devoted to review some of the main properties of multisymplec-
tic geometry and is mainly based on the results presented in [5, 6, 9, 13, 21]. In
particular we discuss the following topics: the basic definition of multisymplectic
manifold (in Sect. 18.2) and the Hamiltonian structures associated to a multisym-
plectic form (Sect. 18.3), the characteristic submanifolds of multisymplectic man-
ifolds (Sect. 18.4), the canonical models and the existence of Darboux-type coor-
dinates (Sect. 18.5), other kinds of relevant multisymplectic manifolds (Sect. 18.6)
and, finally, some interesting theorems of invariance and characterization by auto-
morphisms (Sect. 18.7).
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All the manifolds are real, second countable and C∞. The maps and the structures
are C∞. Sum over repeated indices is understood.

18.2 Multisymplectic Manifolds

(See [5, 6, 13] for more details).

Definition 1 LetM be a differentiable manifold, with dimM = n, and� ∈ �k(M )

(�k(M ) denotes the set of differentiable k-forms inM ), with k ≤ n.

• The form � is 1-nondegenerate if, for every p ∈ M and Xp ∈ TpM ,

i(Xp)�p = 0 ⇐⇒ Xp = 0 .

• The form � is a multisymplectic form if it is closed and 1-nondegenerate.
• A multisymplectic manifold of degree k is a couple (M ,�), where � ∈ �k(M )

is a multisymplectic form.

If � is only closed then it is called a pre-multisymplectic form.
If � is only 1-nondegenerate then it is an almost-multisymplectic form.

If dimM ≥ 2, then a multisymplectic k-form must have degree k ≥ 2.
The property of 1-nondegeneracy can be characterized equivalently as follows: a

differentiable k-form � is 1-nondegenerate if, and only if, the vector bundle mor-
phism

�� : TM → �k−1T∗M
Xp 
→ i(Xp)�p

and thus the corresponding morphism of C∞(M )-modules

�� : X(N ) → �k−1(N )

X 
→ i(X )�

are injective.
Some examples of multisymplectic manifolds are the following: Multisymplectic

manifolds of degree 2 are just symplectic manifolds. Multisymplectic manifolds
of degree n are orientable manifolds and the multisymplectic forms are volume
forms. Bundles of k-forms (k-multicotangent bundles) endowed with their canonical
(k + 1)-forms are multisymplectic manifolds of degree k + 1. Jet bundles (over m-
dimensionalmanifolds) endowedwith thePoincaré-Cartan (m + 1)-forms associated
with (singular)Lagrangian densities are (pre)multisymplectic manifolds of degree
m + 1.



18 Some Properties of Multisymplectic Manifolds 327

18.3 Hamiltonian Structures in Multisymplectic Manifolds

(See [5, 6, 13] for more details).

Definition 2 A m-vector field (or a multivector field of degree m) in a manifold
M (with m ≤ n = dimM ) is any section of the bundle �m(TM ) → M (that is, a
contravariant, skewsymmetric tensor field of degree m in M ). The set of m-vector
fields inM is denoted by Xm(M ).

The local description of multivector fields of degree m is the following: for every
p ∈ M , there are a neighbourhood Up ⊂ M and local vector fields X1, . . . ,Xr ∈
X(Up), with m ≤ r ≤ dimM , such that

X|Up =
∑

1≤i1<...<im≤r

f i1...imXi1 ∧ . . . ∧ Xim ; with f i1...im ∈ C∞(Up) . (18.1)

Definition 3 Let X ∈ Xm(M ) be a multivector field.
X is homogeneous (or decomposable) if there are X1, . . . ,Xm ∈ X(M ) such that
X = X1 ∧ . . . ∧ Xm.
X is locally homogeneous (decomposable) if, for every p ∈ M , there existUp ⊂ M
and X1, . . . ,Xm ∈ X(Up) such that X|Up = X1 ∧ . . . ∧ Xm.

Remark 1 Locally decomposable m-multivector fields X ∈ Xm(M ) are locally as-
sociated with m-dimensional distributions D ⊂ TM .

Every multivector field X ∈ Xm(M ) defines a contraction with differential forms
� ∈ �k(M ), which is the natural contraction between tensor fields. In particular, if
X is expressed as in (18.1), we have

i(X)�|Up =
∑

1≤i1<...<im≤r

f i1...im i(X1 ∧ . . . ∧ Xm)�

=
∑

1≤i1<...<im≤r

f i1...im i(X1) . . . i(Xm)� .

Then, the k-form � is said to be j-nondegenerate (for 1 ≤ j ≤ k − 1) if, for every
p ∈ E and Y ∈ Xj(M ), we have that i(Yp)�p = 0 if, and only if, Yp = 0.

Then, for every form � ∈ �k(M ) (k ≥ m) we have the morphisms

�� : �m(TM ) −→ �k−m(T∗M )

Xp 
→ i(Xp)�p
; �� : Xm(M ) −→ �k−m(M )

X 
→ i(X)� .

In addition, if X ∈ Xm(M ), the Lie derivative of � ∈ �k(M ) is

L(X)� := [d, i(X)]� = di(X)� − (−1)mi(X)d� .
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Definition 4 Let (M ,�) be a multisymplectic manifold of degree k. A diffeomor-
phism ϕ : M → M is a multisymplectomorphism if ϕ∗� = �.

Definition 5 Let (M ,�) be a multisymplectic manifold of degree k.

1. A vector field X ∈ X(M ) is a locally Hamiltonian vector field if its flow consists
of multisymplectic diffeomorphisms. It is equivalent to demand that L(X )� = 0,
or equivalently, i(X )� ∈ �k−1(M ) is a closed form.

2. A multivector field X ∈ Xm(M ) (m < k) is a locally Hamiltonian multivector
field if L(X)� = 0 or, what is equivalent, i(X)� ∈ �k−m(M ) is a closed form.
Then, for every p ∈ M , existU ⊂ M and ζ ∈ �k−m−1(U ) such that i(X)� = dζ
(on U ).
In this case ζ ∈ �k−m−1(U ) is said to be a locally Hamiltonian form for X.

3. X ∈ Xm(M ) is a Hamiltonian multivector field if i(X)� ∈ �k−m(M ) is an exact
form; that is, there exists ζ ∈ �k−m−1(M ) such that i(X)� = dζ .
In this case ζ ∈ �k−m−1(M ) is said to be a Hamiltonian form for X.

18.4 Characteristic Submanifolds of Multisymplectic
Manifolds

(See [6, 9] for more details and proofs).

Definition 6 Let (M ,�) be a multisymplectic manifold of degree k, and W a dis-
tribution inM . ∀p ∈ M and 1 ≤ r ≤ k − 1, the r-orthogonal multisymplectic vector
space at p is

W⊥,r
p = {v ∈ TpM | i(v ∧ w1 ∧ . . . ∧ wr)�p = 0, ∀w1, . . . ,wr ∈ Wp} ,

the r-orthogonal multisymplectic complement of W is the distribution W⊥,r :=
∪p∈MW⊥,r

p .

1. W is an r-coisotropic distribution if W⊥,r ⊂ W.
2. W is an r-isotropic distribution ifW ⊂ W⊥,r .
3. W is an r-Lagrangian distribution if W = W⊥,r .
4. W is a multisymplectic distribution if W ∩ W⊥,k−1 = {0}.
Remark 2 For every distribution W, we have that W⊥,r ⊂ W⊥,r+1. As a conse-
quence, every r-isotropic distribution is (r + 1)-isotropic, and every r-coisotropic
distribution is (r − 1)-coisotropic.

As a particular situation, if we have a submanifoldN of multisymplectic manifold
M , we can take as distribution in TM the tangent bundle TN and this allows us to
establish a classification of these submanifolds as follows:

Definition 7 Let (M ,�) be a multisymplectic manifold of degree k, and N a sub-
manifold of M . If 0 ≤ r ≤ k − 1, then:
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1. N is an r-coisotropic submanifold of M if TN⊥,r ⊂ TN .
2. N is an r-isotropic submanifold of M if TN ⊂ TN⊥,r .
3. N is an r-Lagrangian submanifold of M if TN = TN⊥,r .
4. N is a multisymplectic submanifold of M if TN ∩ TN⊥,k−1 = {0}.

And, in particular we have:

Proposition 1 A submanifold N of M is r-Lagrangian if, and only if, it is r-isotropic
and maximal.

18.5 Canonical Models for Multisymplectic Manifolds.
Darboux-Type Coordinates

(See [9] for more details).
In the same way as the tangent bundle of a manifold is the canonical model for

symplectic manifolds, the canonical models of multisymplectic manifolds are the
bundles of forms. These canonical models are constructed as follows:

• If Q is a manifold, the bundle ρ : �k(T∗Q) → Q is the bundle of k-forms in Q.
The tautological form (or canonical form) �Q ∈ �k(�k(T∗Q)) is defined as fol-
lows: if α ∈ �k(T∗Q), and V1, . . . , Vk ∈ Tα(�k(T∗Q)), then

�Qα
(V1, . . . , Vk) = i(ρ∗Vk ∧ . . . ∧ ρ∗V1)α .

We have that, �Q = d�Q ∈ �k+1(�k(T∗Q)) is a 1-nondegenerate form and then
(�k(T∗Q),�Q) is a multisymplectic manifold of degree k + 1.
If (xi, pi1...ik ) is a system of natural coordinates in U ⊂ �k(T∗Q), then the local
expressions of these canonical forms are

�Q |U= pi1...ikdx
i1 ∧ . . . ∧ dxik , �Q |U= dpi1...ik ∧ dxi1 ∧ . . . ∧ dxik .

These are called Darboux coordinates in �k(T∗Q).
• If π : Q → E is a fibration, let ρr : �k

r (T
∗Q) → Q be the subbundle of �k(T∗Q)

made of the r-horizontal k-forms inQ with respect to the projection π (that is, the
k-forms in Q vanishing when applied to r π -vertical vector fields in Q).
Let �r

Q ∈ �k(�k
r (T

∗Q)) be the pull-back of �Q to �k
r (T

∗Q). This is the tautolog-
ical k-form in �k

r (T
∗Q), and then, if we construct �r

Q = d�r
Q ∈ �k+1(�k

r (T
∗Q)),

we have that (�k
r (T

∗Q),�r
Q) is also a multisymplectic manifold of degree k + 1.

In the same way, there are also charts of Darboux coordinates in �k
r (T

∗Q) on
which these canonical forms have a local expressions similar to the above ones.

Nevertheless, unlike symplectic manifolds, multisymplectic manifolds (M ,�)

in general are not (locally) diffeomorphic to their canonical models, and additional
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properties are needed in order to have a Darboux theoremwhich assures the existence
of Darboux-type coordinates [26]. In particular:

Definition 8 A special multisymplectic manifold is a multisymplectic manifold
(M ,�) of degree k such that:

1. � = d�, for some � ∈ �k−1(M ).
2. There is a diffeomorphism φ : M → �k−1(T∗Q), dim Q = n ≥ k − 1, (or φ :

M → �k−1
r (T∗Q)), and a fibration π : M → Q such that ρ ◦ φ = π (resp. ρr ◦

φ = π ), and φ∗�Q = � (resp. φ∗�r
Q = �).

(It is said that (M ,�) is multisymplectomorphic to a bundle of forms).

In order to have multisymplectic manifolds which locally behave as the canoni-
cal models, it is necessary to endow them with additional structures; in particular, a
1-isotropic distribution W satisfying some dimensionality conditions, and a “gen-
eralized distribution” ε defined on the space of leaves determined by W. In fact,
the existence of distributions satisfying certain properties is a necessary condition in
order to establish Darboux-type theorems for different kinds of geometrical struc-
tures (presymplectic, cosymplectic, k-symplectic, and k-cosymplectic) [2, 7, 10,
11]. Thus:

Definition 9 Let (M ,�)be amultisymplecticmanifold of degree k, andW a regular
1-isotropic involutive distribution in (M ,�).

1. A multisymplectic manifold of type (k, 0) is a triple (M ,�,W) such that, for
every p ∈ M , we have that:

a. dimW(p) = dim�k−1(TpM /W(p))∗.
b. dim (TpM /W(p)) > k − 1.

2. A multisymplectic manifold of type (k, r) (1 ≤ r ≤ k − 1) is a quadruple
(M ,�,W,E), where E is a “generalized distribution” on M (this means that,
for every p ∈ M , E(p) is a vector subspace of TpM /W(p)) and, denoting by
πp : TpM → TpM /W(p) the canonical projection, we have that:

a. i(v1 ∧ . . . ∧ vr)�p = 0, for every vi ∈ TpM such that πp(vi) ∈ E(p) (i =
1, . . . , r).

b. dimW(p) = dim�k−1
r (TpM /W(p))∗, where the horizontal forms are con-

sidered with respect to the subspace E(p).
c. dim (TpM /W(p)) > k − 1.

And the fundamental result is the following:

Proposition 2 Every multisymplectic manifold (M ,�) of type (k, 0) (resp. of type
(k, r)) is locally multisymplectomorphic to a bundle of (k − 1)-forms �k−1(T∗Q)

(resp. �k−1
r (T∗Q)), for some manifold Q; that is, to a canonical multisymplectic

manifold.
Therefore, there is a local chart ofDarboux coordinates around every point p ∈ M.
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Proof The proof of this Theorem is very long and can be found in [9] (where, in
particular, the relation with the canonical models is shown). �

Then we define:

Definition 10 Multisymplecticmanifoldswhich are locallymultisymplectomorphic
to bundles of forms are called locally special multisymplectic manifolds.

Of course, every special multisymplectic manifold is a locally special multisym-
plectic manifold and hence has charts of Darboux coordinates at every point.

As an interesting example, if π : E → M is a fiber bundle (where M is an m-
dimensional oriented manifold), J 1π is the corresponding first-order jet bundle, and
L is a first-order hyperregular Lagrangian density, then the Poincaré-Cartan form
�L ∈ �m+1(J 1π) is a multisymplectic form and (J 1π,�L) is a special multisym-
plectic manifold [4, 15, 30].

18.6 Other Kinds of Multisymplectic Manifolds

(See [13] for more details).
It is a well-known property of symplectic manifolds that the set of local Hamil-

tonian vector fields span locally the tangent bundle of the manifold and, hence, the
action of the group of multisymplectic diffeomorphisms on M is transitive (in fact,
these properties are a consequence of the existence of Darboux coordinates). Never-
theless, in general, these properties do not hold for multisymplectic manifolds and so
locally Hamiltonian vector fields in a multisymplectic manifold (M ,�) do not span
the tangent bundle of this manifold, and the group of multisymplectic diffeomor-
phisms does not act transitively onM . In order to achieve this we need to introduce
additional conditions. Hence, we define:

Definition 11 LetM be a differentiable manifold, p ∈ M and a compact set K with

p ∈ ◦
K . A local Liouville or local Euler-like vector field at p with respect to K is a

vector field p ∈ X(M ) such that:

1. suppp := {x ∈ M | p(x) �= 0} ⊂ K ,

2. there exists a diffeomorphism ϕ :
◦︷ ︸︸ ︷

suppp → R
n such that ϕ∗p = , where

 = xi
∂

∂xi
is the standard Liouville or dilation vector field in Rn.

Definition 12 A form � ∈ �k(M ) is said to be locally homogeneous at p ∈ M if,
for every open set U ⊂ M containing p, there exists a local Euler-like vector field
p at p with respect to a compact set K ⊂ U such that

L(p)� = f � ; f ∈ C∞(U ) .
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� is locally homogeneous if it is locally homogeneous for all p ∈ M .
A locally homogeneous manifold is a couple (M ,�), whereM is a manifold and

� ∈ �k(M ) is locally homogeneous.

Therefore we have that:

Proposition 3 Let (M ,�) be a locally homogeneous multisymplectic manifold.
Then the family of locally Hamiltonian vector fields span locally the tangent bundle
of M ; that is, ∀ p ∈ M, TpM = span{Xp | X ∈ X(M ) , L(X )� = 0} .

Proof (Outline of the proof ): The proof is very technical (see [13] for all the details).
First, the existence of local Euler-like vector fields and their properties allows us to
prove a previous result known as the localization Lemma which states that, if X
is a locally Hamiltonian vector field, and x0 ∈ M , then for each open set U � x0,
there exists an open neighbourhood V of x0 such that V ⊂ V̄ ⊂ U , with V̄ compact,
and a locally Hamiltonian vector field X ′ such that X ′ coincides with X in V and
vanishes identically outside of U . Then, the proof of this Proposition follows from
the aplication of this Lemma and using again Euler-like vector fields. �

Theorem 1 The group of multisymplectic diffeomorphisms G(M ,�) of a locally
homogeneous multisymplectic manifold (M ,�) acts transitively on M .

Proof (Outline of the proof [13]): The proof is based on the application of Proposition
3 and the above mentioned localization Lemma. �

Remark 3 Locally special multisymplectic manifolds have local Euler-like vector

fields; in particular, the local vector fields

{
xi

∂

∂xi
+ pi1...ik

∂

∂pi1...ik

}
. Then, the corre-

sponding multisymplectic forms are locally homogeneous.
As a consequence, if (M ,�) is a locally special multisymplectic manifold, then

the family of locally Hamiltonian vector fields span locally the tangent bundle ofM
and the group of multisymplectic diffeomorphisms acts transitivelly on M . In fact,

the local vector fields

{
∂

∂xi
,

∂

∂pi1...ik

}
are locally Hamiltonian.

18.7 Invariance Theorems

(See [13, 21] for more details).
As final remarks, in this Section we generalize some classical theorems of sym-

plectic geometry in the field of multisymplectic manifolds.
The first one is a partial generalization of Lee Hwa Chung’s Theorem for sym-

plectic manifolds, which characterizes all the differential forms which are invariant
under infinitesimal symplectomorphisms [19, 24, 25]:

Theorem 2 Let (M ,�) be a locally homogeneous multisymplectic manifold of de-
gree k and α ∈ �p(M ), with p = k − 1, k, such that:
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(i) The form α is invariant by the set of locally Hamiltonian (k − 1)-vector fields;
that is, L(X)α = 0, for every X ∈ Xk−1

lh (M ).
(ii) The form α is invariant by the set of locally Hamiltonian vector fields; that is,

L(Z)α = 0, for every Z ∈ Xlh(M ).

Therefore:

1. If p = k then α = c�, with c ∈ R.
2. If p = k − 1 then α = 0.

Proof (Outline of the proof [13]): It is an adaptation of the proofs given in [19, 25]
for presymplectic and symplectic manifolds. From the hypothesis of the Theorem
and bearing in mind the properties stated in Sect. 18.3, it can be proved that, for every
X ,Y ∈ Xk−1

lh (M ), the following relation holds: i(X )� ∧ i(Y )α + i(Y )� ∧ i(X )α =
0; and taking X ∈ kerk−1 �, from here you get to i(X )α = 0. Then it is proved
that, if p = k − 1 then α = 0; but, if p = k, then there exists a unique α′ ∈ C∞(M )

such that i(X )α = α′i(X )�, for every X ∈ Xk−1
lh (M ). Therefore, using some local

properties of the locally Hamiltonian (k − 1)-multivector fields, it is concluded that
α′ is constant and the final conclusion follows straightforwardly from the last results
and Proposition 3. �

The second one is a generalization of some Theorems of Banyaga for symplectic
and other orientable manifolds [3]:

Theorem 3 Let (Mi,�i), i = 1, 2, be local homogeneous multisymplectic mani-
folds of degree k and G(Mi,�i) their groups of multisymplectic automorphisms. Let
� : G(M1,�1) → G(M2,�2) be a group isomorphism (which is a homeomorphism
when G(Mi,�i) are endowed with the point-open topology). Then, there exists a
diffeomorphism ϕ : M1 → M2, such that:

1. �(ψ) = ϕ ◦ ψ ◦ ϕ−1, for every ψ ∈ G(M1,�1).
2. The map ϕ∗ maps locally Hamiltonian vector fields of (M1,�1) into locally

Hamiltonian vector fields of (M2,�2).
3. In addition, if ϕ∗ maps locally Hamiltonian multivector fields of (M1,�1) into

locally Hamiltonian multivector fields of (M2,�2), then there is a constant c
such that ϕ∗�2 = c�1.

Proof (Outline of the proof [13]): By Theorem 1, G(Mi,�i) acts transitively onMi

and, by the main theorem in [33], there exists a bijective map ϕ : M1 → M2 such that
�(ψ) = ϕ ◦ ψ ◦ ϕ−1. Then it is proved that ϕ is a homeomorphism and, adapting
the proof in [3] to our setting, that it is also a smooth diffeomorphism. Therefore, as
a consequence of this proof, we conclude that ϕ∗ maps locally Hamiltonian vector
fields into locally Hamiltonian vector fields. Finally, assuming the hypothesis of the
third item, using Theorem 2 we have that ϕ∗�2 = c�1. �
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18.8 Conclusions and Discussion

Some of the main properties and characteristics of multisymplectic manifolds have
been reviewed in this dissertation. Although most of them are generalizations of
other well-known results for symplectic geometry, in the multisymplectic case, they
are more elaborated and richer than for symplectic manifolds, in general; and it is
for this reason that this is a topic of active research [31].

In particular, other interesting properties of multisymplectic manifolds which
have not been analyzed here are, for instance: the graded Lie algebra structure of
the sets of Hamiltonian forms and Hamiltonian multivector fields [5, 13], polarized
multisymplectic manifold and its general structure theorem [6], as well as other
properties and relevance of r-coisotropic, r-isotropic and, especially, of r-Lagrangian
distributions and submanifols [6, 9], and the characterizations of multisymplectic
transformations [13].

Acknowledgements I acknowledge the financial support of the Ministerio de Ciencia e Inno-
vación (Spain), projects MTM2014–54855–P and MTM2015-69124–REDT, and of Generalitat de
Catalunya, project 2017–SGR–932.
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Chapter 19
A Simple Model of Double Dynamics
on Lie Groups

Patrizia Vitale

Abstract We study the dynamics of the rigid rotator on the group manifold of
SU (2) as an instance of dynamics on Lie groups together with a dual model whose
carrier space is the Borel group SB(2, C), the Lie Poisson dual of SU (2). We thus
introduce a parent action on the Drinfel’d double of the above mentioned groups,
which describes the dynamics of a system with twice as many degrees of freedom
as the two starting partners. Through a gauging procedure of its global symmetries
both the rigid rotor and the dual model are recovered.

19.1 Introduction

This paper is based on a lecture given at the conference in honour of Alberto
Ibort,“Classical and Quantum Physics: Geometry, Dynamics and Control” at IC-
MAT, Madrid, in March 2018, and it is aimed at discussing within a simple example
of dynamics over Lie groups, the isotropic rigid rotator (IRR), the interplay be-
tween concepts such as non-Abelian and Poisson-Lie T-duality [1–3], Generalized
and Doubled Geometry [4–7], Double Field Theory (DFT) [8], in the mathematical
framework of Poisson-Lie groups andDrinfel’d doubles [9, 10]. Themain goal being
here to convey the general philosophy, many technical details and in deep calcula-
tions are left aside and we refer to [11] for an extended presentation of the results. A
generalization to field theory can be found in [12].

The cotangent space of a d dimensional Lie group, G, T ∗G ∼ G × R
d , while

providing the carrier space for theHamiltonian dynamics ofmany systems of physical
relevance, possesses a very interesting structure from themathematical point of view,
it being itself a Lie group, the semi-direct product of the Lie group G with the dual
of its Lie algebra, the Abelian Lie algebra g∗ ∼ R

d , thought of as an Abelian vector
group. Free dynamics over the group manifold is described in terms of momenta,
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Ii, i = 1, ..., d which are coordinate variables for the fiber g∗, with Hamiltonian
evolution governed by Kirillov-Souriau-Konstant (KSK) Poisson brackets {Ii, Ij} =
ckijIk and ckij the structure constants of the Lie algebra g.

The first interesting remark, although well known, is thus that, as a Lie group g∗
is Abelian, but the Poisson algebra of linear functions over g∗, is non-Abelian and
isomorphic to the Lie algebra g. Moreover the latter can be obtained by linearizing
the so-called Poisson-Lie structure over the dual group of G which shall be indicated
by G∗[13].

The tangent bundle TG has the structure of a group, with its fiber which is iso-
morphic to the Lie algebra g, typically non-Abelian. Fiber coordinates, namely
the generalized velocities, are components of left or right invariant vector fields
Xa = Q̇i

(a)
∂

∂Qi , a = 1, ..., d with non-trivial Lie brackets [Xa,Xb] = ccabXc.
Models which exchange tangent and cotangent bundle coordinates over Lie

groups, have been widely studied in the context of field theory of sigma models
and the duality which is naturally inherited from the relation between the Lie algebra
and its dual, is referred to as non-Abelian, or semi-Abelian duality [1]. According
to the structure which we have outlined, the dual model in such context relies on a
Poisson algebra of momenta which is Abelian. The IRR system, which we are going
to investigate in the paper, can be regarded as a 0 + 1 dimensional analogue of a
non-linear sigma model with target space SU (2).

Once identified the cotangent space of the Lie group G with a semi-direct prod-
uct of groups, the second interesting observation is that there exists a well defined
procedure for deforming the semi-direct product into a fully non-Abelian group, by
introducing a non-trivial Lie algebra structure over g∗, so that the cotangent space
G � R

d be replaced by D � G · G∗ (the latter trivialization being only local) with
G∗ the Lie group obtained by g∗ by exponentiation. The group D is the Drinfel’d
double of G. Since the role of G and G∗ is symmetric, D can be dually regarded
as the double of G∗ and hence, as a deformation of the cotangent bundle T ∗G∗.1
Therefore a dynamical system can be defined with the latter as carrier space of the
dynamics. The new algebra of momenta, being dictated by the KSK Poisson brack-
ets {Ĩ i, Ĩ j} = f ijk Ĩ

k (f ijk the structure constants of G∗), can be retrieved by linearizing
the Poisson-Lie bracket over G [11]. Therefore, the IRR model and the latter one
are dual to each other, in the sense that they are defined over partner groups in the
Drinfel’d double D, with linearized Poisson-Lie brackets of momenta. This is a kind
of Poisson-Lie duality, although the name has already been used in the literature in
the context of sigma models [2], implying a more stringent relation, which we will
comment in due time. Completely integrable systems and their relation to double Lie
groups have been studied in [14].

A natural step further is to consider a parent action over the Drinfel’d double D
with twice as many degrees of freedom as the two actions over G, G∗ respectively.
Such a doubling will generate a Double Field Theory when considering the 1+1-

1Notice however that, in case G is a compact group, such as SU (2), its cotangent bundle is truly
diffeomorphic to its Drinfel’d double, while the cotangent bundle of its dual, SB(2C) for SU (2), is
only a deformation of the double.
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dimensional analogue of the IRR model [12]. The generalized action encodes the
global symmetries of both models and can be reduced to either of them by means
of an appropriate gauging of some of the symmetries. The generalized momenta PI

being sections of the cotangent bundle T ∗D can be described in terms of themomenta
of the cotangent spaces of the dually related groups G,G∗: PI � (Ii, Ĩ i), where the
position of indices stresses the dual geometric meaning of the two. Because the
cotangent fibre of one group can be identified with the tangent fiber of the other and
vice-versa, the connection with Generalized Geometry is thus natural.

The latter was first introduced byHitchin in [4]. Shortly, it consists in replacing the
tangent bundle T of a manifold M with T ⊕ T ∗, a bundle with the same base space
M but fibers given by the direct sum of tangent and cotangent spaces. Moreover, the
Lie bracket on the sections of T , which are vector fields, is replaced by the Courant
bracket which involves vector fields and one-forms. This is in turn related to Double
Field Theory (DFT) [8].

DFTwas introduced to realize the symmetry of the dynamics of string theory under
target space duality transformations as a manifest symmetry of the string action. In
order to achieve this goal, the degrees of freedom of the target space, represented
by the coordinate fields xi(σ, τ ), i = 1, . . . , d have to be doubled with respect to
the starting model. Therefore, in the framework of string theory, the doubling takes
place in the d -dimensional target spaceM of the non-linear sigma model underlying
the string action, by introducing new fields x̃i(σ, τ ), which are dual to xi(σ, τ ),
with i = 1, . . . , d . This is in perfect agreement with the approach of Generalized
Geometry, by identifying xi, x̃i with sections of a generalized bundle E ⊕ E∗ over
the world sheet of the string. Thus, it is only when the target space of the string
becomes the configuration space of an effective field theory, that the doubling of
fields is reinterpreted as a doubling of the configuration space. A formulation of
the string action with manifest T-duality invariance was first proposed by [15, 16].
A corresponding doubling of the space-time degrees of freedom in the low-energy
effective action first occurred in the pioneering of work of Siegel [17]. There is
therefore a relation between GG and DFT which we think can be better understood
within the study of the dynamics of simple models over Lie groups, where duality
and doubling are naturally encoded within the notion of Drinfel’d double and dual
Poisson-Lie groups [9, 10]. These geometric structures have first been introduced
in the context of field theory by Klimčík and Ševera in [1], Klimčík [2] where the
authors first introduced the notion of Poisson-Lie T-duality (also see [18], [19],
[20]) for sigma models. DFT on group manifolds with its relation with Poisson-Lie
symmetries, has been investigated in [21].

The interest for DFT is naturally not limited to string theory. The necessity of dou-
bling the degrees of freedom occurs already in the Lagrangian/Hamiltonian formu-
lation of dissipative dynamics [22], or, recently, within the symplectic realization of
so-called twisted Poisson brackets [23–25], namely non-degenerate brackets which
however violate Jacobi identity. While the latter can be related to the non-associative
nature of the product emerging from the attempt of quantizing such models, the oc-
currence of auxiliary degrees of freedom is also a typical feature of Noncommutative
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geometry.2 For example, in order to build a noncommutative extension of Palatini-
Holst theory of gravity it was pointed out in [31] that the gauge group has to be
enlarged, leading to the introduction of new gravitational degrees of freedom. In
particular, the tetrad degrees of freedom were doubled, thus leading to a bi-tetrad
theory of gravity, generalizing a model that was previously proposed in [32].

The paper is intended to give a short account of the results contained in [11].
Therefore the structure strictly follows the former, although being less technical. In
Sect. 19.2 we review the dynamics of the IRR on the group manifold of the group
SU (2). In Sect. 19.3 we shortly introduce the mathematical framework of Poisson-
Lie groups and Drinfel’d doubles. In Sect. 19.4 we introduce a dynamical model
on the dual group of SU (2), the Borel group SB(2, C) and study its dynamics. In
Sect. 19.5 we propose a parent action on the Drinfel’d double, which has twice as
many degrees of freedom as the two partner models. The latter are recovered by
appropriately gauging the global symmetries of the former. Finally, in Sect. 19.5.1
we introduce the Hamiltonian formalism for the double model and in 19.5.2 we study
in detail the full Poisson algebra. The Poisson brackets of the generalized momenta
(Ii, Ĩ i) can be related to a first-order expansion, in some deformation parameter, of
Poisson-Lie brackets on the two dual groups, thus giving rise to a kind of Poisson-Lie
T-duality between the twomodels. The full Poisson algebra ofmomenta is isomorphic
to the algebra of SL(2, C), the double covering of the Lorentz group. Section19.6
contains our conclusions.

19.2 The Isotropic Rigid Rotator

The dynamics of the three-dimensional Isotropic Rigid Rotator (IRR) can be for-
mulated in terms of group valued dynamical variables (see [33] as a reference text
for the subject), with its target configuration space the group manifold of SU (2).
The Lagrangian and Hamiltonian formulation are respectively described on the tan-
gent/cotangent bundle of the group.

In the Lagrangian approach the dynamics is defined on the tangent bundle,
TSU (2), in terms of an action functional

S0 =
∫
R

L0 dt = −1

4

∫
R

Tr (ϕ∗(g−1dg) ∧ ∗
H
ϕ∗(g−1dg)) = −1

4

∫
R

Tr (g−1ġ)2dt

(19.1)

2Noncommutative gauge theories usually require that the gauge group be enlarged (see for example
[26] for a review). The differential calculus itself may be bigger than in the commutative case
(see for example [27] for an occurrence of this phenomenon in three dimensions and [28] for an
application to two-dimensional gauge theory.

In order to cure nonrenormalizability of noncommutative field theories auxiliary terms have to
be added to the action functional, which involve auxiliary parameters. This is the case of simple
scalar field theories such as the Grosse-Wulkenhaar model [29], or the translation-invariant model
[30].
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where ϕ : t ∈ R → SU (2) is the group-valued dynamical variable, while ϕ∗ is the
induced pull-back map. g−1dg = 2iαkek is the Maurer-Cartan left-invariant one-
form, ek = σk/2 are the SU (2) generators with σk the Pauli matrices, αk are the
basic left-invariant one-forms, ∗

H
denotes the Hodge star operator on the source space

R, such that ∗Hdt = 1, and Tr the trace over the Lie algebra. Moreover,

g−1ġ ≡ ϕ∗(g−1dg)(Γ ) (19.2)

with Γ = d/dt the dynamical field. The model can be regarded as a (0 + 1)-
dimensional field theory which is group-valued.

From now on, to simplify the notation, we shall trade g−1dg for its pull-back, and
the dynamical variable ϕ for g, as it is customary in the dynamics of fields over Lie
groups. The group manifold being a three-sphere, we can look at it as a submanifold
of R

4, satisfying the constraint (y0)2 + ∑
i(y

i)2 = 1. It it then straightforward to
check that group elements, which have to obey g† = g−1 and det g = 1, can be
parameterized according to g = 2(y0e0 + iyiei), with e0 = 1/2. By observing that,
in the chosen parametrization

g−1ġ = 2i(y0ẏi − yiẏ0 + εi jky
jẏk)ei (19.3)

left generalized velocities Q̇i may be introduced

Q̇i ≡ (y0ẏi − yiẏ0 + εi jky
jẏk) (19.4)

so that g−1ġ = 2iQ̇iei. (Qi, Q̇i) i = 1, . . . , 3 are therefore tangent bundle coordi-
nates, with Qi implicitly defined [33]. From right-invariant one-forms one could
define right generalized velocities in an analogous way. They give an alternative set
of coordinates over the tangent bundle.

The Lagrangian L0 can be read from the action (19.1). In the chosen coordinates
it can be written as:

L0 = 1

2
Q̇iQ̇jδij (19.5)

hence describing a free dynamics over the three sphere. In intrinsic formulation,
which is especially useful for generalizations, Euler-Lagrange equations of motion
can be restated as [33]

LΓ θL − dL0 = 0 (19.6)

with

θL = 1

2
Tr [g−1ġ g−1dg] = Q̇iαjδij (19.7)

the Lagrangian one-form and LΓ the Lie derivative with respect to the dyamical field.
With a little calculation we obtain
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LΓ Q̇
jδji − Q̇pQ̇qεip

kδqk = LΓ Q̇
jδji = 0 (19.8)

because of the rotation invariance of the product and the complete antisymmetry of
the structure constants of SU (2).

Equivalently, we can describe the dynamics on the cotangent bundle, T ∗SU (2),
in terms of left coordinates (Qi, Ii) and Ii = ∂L0

∂Q̇i = δijQ̇j denoting left momenta. As
above, an alternative set of fiber coordinates is represented by right momenta, which
are obtained from right generalized velocities.

By Legendre transform we obtain:

H0 = [IiQ̇i − L0]Q̇i=δij Ij = 1

2
δijIiIj (19.9)

which is the Hamiltonian of the rigid rotor, in the standard text-books form, with
Ii, i = 1, 2, 3 the angular momentum components. The dynamics of the IRR is read-
ily obtained by supplementing the Hamiltonian (19.9) with the following Poisson
brackets

{yi, yj} = 0 (19.10)

{Ii, Ij} = εij
k Ik (19.11)

{yi, Ij} = δij y
0 + εi jky

k or equivalently {g, Ij} = 2igej (19.12)

which are easily derived from the actionwith standard techniques [11]. HenceHamil-
ton equations of motion for the system read

İi = 0, g−1ġ = 2iIiδ
ijej

namely fiber variables Ii representing the angularmomentum are constants ofmotion,
while the orientation of the rotor, which is associated with base space coordinates
(y0, yi), undergoes a uniform precession. According to (19.11) right rotations are
implemented canonically and the Hamiltonian is left invariant.

Analogously, we can deduce that right momenta are canonically realized and
conserved as well, hence the model is also left-invariant.

Let us briefly recall some well known facts about the geometric structure of the
two carrier spaces considered, namely TSU (2) and T ∗SU (2). As manifolds both
the bundles are diffeomorphic to the product S3 × R

3 and both have the structure
of a Lie group, the former being given by the product of the Lie group with the
vector space spanned by its Lie algebra, su(2) � R

3, the latter by the product of
the Lie group with the dual of its Lie algebra, su(2)∗ � R

3. Although the fibers
are diffeomorphic, their geometric structure is dual: tangent bundle coordinates,
Q̇i, denote vector fields components, whereas cotangent bundle coordinates, Ii, are
components of one-forms. This almost trivial remark will be relevant in next section,
where the interesting structure to us will be the semi-direct nature of T ∗SU (2) and
the Abelian structure of su(2)∗ will be deformed.
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Before closing the section let us mention that already in [13] the phase space of
the rigid rotator was generalized to the semi-simple group SL(2,C), by replacing
the Abelian subgroup R3 of the semi-direct product above, with the Borel group
SB(2, C), namely, passing to the double Lie group of SU (2). In next section we
shall review the mathematical construction of Drinfel’d double Lie groups and their
relation with the structures of Generalized Geometry. Our generalization will be
however different form the one considered in [13].

19.3 Poisson-Lie Groups and the Double Lie Algebra
sl(2,C)

A Poisson-Lie group [10, 34–36] is a Lie group equipped with a Poisson structure
which is compatible with the group composition. A typical example is the cotangent
bundle of a Lie group, equipped with the natural Kirillov-Souriau-Konstant (KSK)
Poisson bracket along the fibers and trivial Poisson bracket on the base manifold. As
an example, which is relevant to us, let us consider in detail T ∗SU (2). As a group,
this is the semi-direct product of SU (2) and the Abelian group su(2)∗ � R

3, with
the corresponding Lie algebra given by the semidirect sum su(2)⊕̇su(2)∗ and Lie
bracket:

[
Li,Lj

] = iεij
kLk ,

[
Ti,Tj

] = 0,
[
Li,Tj

] = iεij
kTk . (19.13)

It is then a standard procedure to associate with Li ∈ su(2) linear functions over the
dual algebra su(2)∗, andwith Ti ∈ su(2)∗ linear functions on (su(2)∗)∗ = su(2). The
former correspond to the momenta, Ii, while the latter, being su(2)∗ Abelian, can
be traded directly by coordinate functions over the group manifold, yμ ∈ C∞(G).
A compatible Poisson structure on the group manifold is thus the one given by
(19.10)–(19.12).

Going back to the general case, let us see what are the constraints for the Poisson
structure on the group manifold. Its linearization at the unit e of the group provides
a Lie algebra structure over the dual algebra g∗ = T ∗

e (G) by the relation

[dξ1(e), dξ2(e)]∗ = d{ξ1, ξ2}(e) (19.14)

with ξi ∈ C∞(G). The compatibility condition between the Poisson and Lie struc-
tures of G yields the relation:

〈[X ,Y ], [v,w]∗〉 + 〈ad∗
vX , ad∗

Yw〉 − 〈ad∗
wX , ad∗

Y v〉
−〈ad∗

vY , ad∗
Xw〉 + 〈ad∗

wY , ad∗
X v〉 = 0 (19.15)

with v,w ∈ g∗,X ,Y ∈ g and ad∗
X , ad∗

v the coadjoint actions of the Lie algebras g, g
∗

on each other. This allows one to define a Lie bracket in g ⊕ g∗ through the formula:
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[X + ξ,Y + ζ ] = [X ,Y ] + [ξ, ζ ]∗ − ad∗
X ζ + ad∗

Y ξ + ad∗
ζ X − ad∗

ξ Y . (19.16)

The symmetry between g and g∗ implies that one has also a Poisson-Lie group G∗
with Lie algebra (g∗, [ , ]∗) and a Poisson structure whose linearization at e ∈ G∗
gives the bracket [ , ]. G∗ is the dual Poisson-Lie group of G. The Lie group D,
associated with the Lie algebra d = g � g∗ is the Drinfel’d double group of both
groups, G and G∗, being the construction symmetric.3 Let us notice that T ∗G is an
example of a double Lie group, with G∗ = g∗ = R

n Abelian.
There is a dual algebraic approach to the picture above, mainly due to Drinfel’d

[9], which starts from a deformation of the semi-direct sum g ⊕̇ R
n into a fully

non-Abelian Lie algebra. Let us review the construction for the group SU (2), whose
Drinfel’d double is the group SL(2, C) [9].

One starts from the complex Lie algebra sl(2) , with generators

t1 =
(
0 1
0 0

)
; t2 =

(
0 0
1 0

)
; t3 =

(
1 0
0 −1

)
. (19.17)

satisfying:
[t3, t1] = 2t1; [t3, t2] = −2t2; [t1, t2] = t3. (19.18)

The real algebra sl(2,C) is obtained by considering the complex linear combinations

e1 = 1

2
(t1 + t2) = σ1

2
, e2 = i

2
(t2 − t1) = σ2

2
, e3 = 1

2
t3 = σ3

2
(19.19)

bi = iei i = 1, 2, 3 (19.20)

with Lie brackets

[ei, ej] = iεij
kek , [ei, bj] = iεij

kbk , [bi, bj] = −iεij
kek (19.21)

and {ei}, i = 1, 2, 3, generating the su(2) subalgebra.
A different basis can be chosen, by introducing:

ẽ1 = it1; ẽ2 = t1; ẽ3 = i

2
t3, (19.22)

which are dual to the generators (19.19), with respect to the scalar product naturally
defined on sl(2, C) as:

〈u, v〉 = 2 Im[ Tr (uv) ], ∀u, v ∈ sl(2, C). (19.23)

We have indeed

3We denote with the symbol � the Lie algebra structure of d as a sum of two non-Abelian, non
commuting subalgebras, each one of them acting on its dual.
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〈ẽi, ej〉 = 2 Im[ Tr (ẽiej) ] = δij . (19.24)

Hence, {ẽj} span the dual vector space su(2)∗. This is by itself a Lie algebra, the
special Borel subalgebra sb(2, C) with Lie brackets:

[ẽi, ẽj] = if ijk ẽ
k (19.25)

and f ijk = εijlεl3k . Moreover

[ẽi, ej] = iεijk ẽ
k + iek f

ki
j. (19.26)

Since
〈ei, ej〉 = 〈ẽi, ẽj〉 = 0 (19.27)

both su(2) and sb(2, C) are maximal isotropic subspaces of sl(2, C) with respect to
the scalar product (19.23).We have sl(2, C) = su(2) � sb(2, C). Therefore, the Lie
algebra sl(2, C) can be split into two maximally isotropic dual Lie subalgebras with
respect to a bilinear, symmetric, non degenerate formdefined on it. The couple (su(2),
sb(2, C)), with the dual structure described above, is a Lie bialgebra and the role of
su(2) and its dual algebra can be interchanged. The triple (sl(2, C), su(2), sb(2, C))

is called aManin triple [9].
D = SL(2, C) is thus the double group obtained by exponentiating the bialgebra.

It may be endowed with a Poisson bracket on the group manifold compatible with
the group structure, which we shall consider in Sect. 19.5.2. The two partner groups,
G = SU (2) and G∗ = SB(2, C) with suitable Poisson brackets, are named dual
groups.

Besides the scalar product (19.23), there is another non-degenerate, positive-
definite scalar product, in sl(2, C) given by

(u, v) = 2Re[ Tr (uv) ] ∀u, v ∈ sl(2, C). (19.28)

with new maximal isotropic subspaces which are spanned by:

f +
i = 1√

2
(ei + bi); f −

i = 1√
2
(ei − bi). (19.29)

satisfying
(f +
i , f +

j ) = (f −
i , f −

j ) = 0; (f +
i , f −

j ) = δij. (19.30)

By denoting by C+ and C− the two subspaces spanned by {ei} and {bi} respectively,
one can notice [6] that the splitting d = C+ ⊕ C− defines a positive definite metric,
G, which we shall indicate with double round brackets,

(( , )) := ( , )C+ − ( , )C− (19.31)
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One has then:

((ei, ej)) ≡ (ei, ej) = δij, ; ((bi, bj)) ≡ −(bi, bj) = δij, ;
((ei, bj)) ≡ (ei, bj) = 0. (19.32)

To summarize, we have introduced two different scalar products on sl(2, C), which
we shall indicate respectively by η and G. On introducing the double notation

eI =
(
ei
ei

)
, ei ∈ su(2), ei ∈ sb(2, C) (19.33)

the scalar product (19.23) may be rewritten as

〈eI , eJ 〉 = ηIJ =
(
0 δ

j
i

δij 0

)
. (19.34)

This symmetric inner product has signature (d , d) and therefore defines the non-
compact orthogonal group O(d , d), with d = 3 in this case.

The Riemannian product (19.32) yields instead:

((eI , eJ )) = GIJ =
(

δij δilε
jl3

εil3δlj δij + εil3δlkε
jk3

)
. (19.35)

The two metrics can be checked to satisfy the relation:

GTηG = η (19.36)

hence, G is a pseudo-orthogonal O(3, 3) matrix.

19.4 A Model over the Dual Group SB(2,C)

Having discussed what may be called an Iwasawa decomposition of the Lorentz
universal covering SL(2, C), and having discovered that the dual partner of the special
unitary group SU (2) is the special Borel group SB(2, C), it is natural to wonder what
could possibly be a natural dynamics on its group manifold and whether the models
defined on the partner groups are dual in some precise mathematical sense, inherited
from the parent double group.

As carrier space for the dynamics in the Lagrangian (respectively Hamiltonian)
formulation we choose therefore the tangent (respectively cotangent) bundle of the
group SB(2, C). A suitable action for the system is the following:
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S̃0 =
∫
R

L̃0 dt = −1

4

∫
R

T r [ϕ̃∗(g̃−1d g̃ ∧ ∗
H
ϕ̃∗(g̃−1d g̃)]

= −1

4

∫
R

T r [(g̃−1 ˙̃g)(g̃−1 ˙̃g)]dt (19.37)

with ϕ̃ : t ∈ R → SB(2, C), the group-valued dynamical variable, and ϕ̃∗ the pull-
back map. Analogously to the IRR case, g̃−1d g̃ = iβk ẽk represents the Maurer-
Cartan left invariant one-form on the group manifold, with βk the left-invariant basic
one-forms, ∗

H
the Hodge star operator on the source spaceR, such that ∗

H
dt = 1.More-

over, as previously, in order to adhere to the notation which is commonly adopted in
field theory, we shall identify the dynamical variable ϕ̃ with g̃ for the remainder of
this section. As a scalar product in the Lie algebra, which we have indicated withT r,
we shall use the one descending form the Riemannian metric G defined on sl(2, C)

in (19.32), which yields for the sb(2, C) generators

((ẽi, ẽj)) = δij + εil3δ
lkε

j
k3 (19.38)

Let us notice that this is not invariant under right action of the group, because the
generators ẽi are not Hermitian, while (19.38) can be verified to be equivalent to:

((u, v)) ≡ 2Re Tr [(u)†v]. (19.39)

Similarly to the IRR case, the group manifold can be parametrized with R
4 coordi-

nates as g̃ = 2(u0ẽ0 + iuiẽi), with u20 − u23 = 1 and ẽ0 = 1/2. By observing that

g̃−1 ˙̃g = 2i(u0u̇i − uiu̇0 + fi
jkuju̇k)ẽ

i (19.40)

the Lagrangian in (19.37) can be rewritten as:

L̃0 = (u0u̇i − uiu̇0 + fi
jkuju̇k)(u0u̇r − uru̇0 + fr

pqupu̇q)((ẽ
i, ẽr)) = ˙̃Qi

˙̃Qrh
ir

with ˙̃Qi ≡ u0u̇i − uiu̇0 + fi
jkuju̇k the left generalized velocities and

hir ≡ δir + εil3δlsε
rs3 (19.41)

the metric defined by the scalar product. (Q̃i,
˙̃Qi) are therefore tangent bundle coor-

dinates, with Q̃i implicitly defined.
By repeating the analysis already performed for the IRR, one finds the equations

of motion:

LΓ (
˙̃Qj iX̃ iβl)h

jl − LX̃ i L̃0 = LΓ
˙̃Qjh

ji − ˙̃Qp
˙̃Qqf

ip
kh

qk = 0. (19.42)
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with X̃ j being the left invariant vector fields generating the right action of SB(2, C).
Differently from the IRR case, the second term in the RHS is not vanishing, because
the structure constants are not completely antisymmetric. This is to be expected
because the Lagrangian is not invariant under right action.

It has to be noticed here that, analogously to the IRR case, one could define the
right generalized velocities on the fibers starting from right invariant one-forms, but,
differently from that case, the right invariant Lagrangian is not equivalent to the left
invariant one.

We can extend the analysis to the cotangent bundle as before, by introducing

left coordinates (Q̃i, Ĩ i) with Ĩ i the conjugate left momenta Ĩ j = ∂L̃0
∂

˙̃Qj

= ˙̃Qr(δ
jr +

ε
j
l3ε

r
s3δ

ls). On inverting for the velocities ˙̃Qj = Ĩ i(δij − 1
2ε

p3
i ε

q3
j δpq), we obtain the

Hamiltonian function:

H̃0 = [Ĩ j ˙̃Qj − L̃] ˙̃Q= ˙̃Q(Ĩ)
= 1

2
Ĩ i(h−1)ij Ĩ

j, (19.43)

with

(h−1)ij ≡ (δij − 1

2
εip3δ

pqεjq3). (19.44)

On introducing the linear combination: Ĩ = iĨ j ẽ∗
j with ej

∗(ẽi) = δij we obtain the first
order dynamics by means of the following Poisson brackets:

{ui, uj} = 0 (19.45)

{Ĩ i, Ĩ j} = f ij k Ĩ
k (19.46)

{ui, Ĩ j} = δ
j
i u0 − fi

jkuk or equivalently {g̃, Ĩ j} = 2ig̃ẽj (19.47)

which are derived from the first order formulation of the action functional (see [11]
for details). Specifically we get:

˙̃I j = {Ĩ j, H̃0} = f jkl Ĩ l Ĩ rh−1
kr (19.48)

which is different from zero, as expected, expressing the non-invariance of theHamil-
tonian under right action.Vice-versa, by introducing the rightmomenta J̃ i one readily
obtains: ˙̃J j = {J̃ j, H̃0} = 0 (19.49)

namely, right momenta are constants of the motion and the Hamiltonian is invariant
under left action, as it should. Right momenta are therefore conserved, as for the
rigid rotator, while left momenta are not.

The same remark as at the end of Sect. 19.2 applies: while the fibers of the tangent
bundleTSB(2, C) can be identified, as a vector space, with the Lie algebra sb(2, C) �
R

3, with ˙̃Qi labelling vector fields components, the fibers of the cotangent bundle
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T ∗SB(2,C) are isomorphic to the dual Lie algebra sb(2, C)∗.This is isomorphic to
R

3 as a vector space, , but Ĩ j are now components of one-forms.
T ∗SB(2, C) is identified as a Lie group with the semi-direct product of SB(2, C)

and the Abelian group R
3, with Lie algebra the semi-direct sum

[
Bi,Bj

] = ifij
kBk ,

[
Si, Sj

] = 0,
[
Bi, Sj

] = ifij
kSk . (19.50)

Then, as for the IRR, the non-triviality of the Poisson algebra over the cotangent
bundle of the group SB(2, C) reflects the structure of the latter. Again, this is an
instance of double Lie group by itself, with trivial Poisson bracket on the group
manifold.

Before closing the section, let us summarize the results. We have introduced a
model on the dual group of SU (2), the Borel group SB(2, C), whose Hamiltonian
dynamics is retrieved in terms of Poisson brackets of KSK type. As we shall see, the
Poisson brackets of the momenta Ii, Ĩ i are dually related.

19.5 The Generalized Action

In the previous sections we have introduced two dynamical models on configuration
spaces which are dual Lie groups. The Poisson algebras for the respective cotangent
bundles, T ∗SU (2), T ∗SB(2, C), given by

{g, g} = 0, {Ii, Ij} = εij
k Ik , {g, Ij} = 2igej (19.51)

{g̃, g̃} = 0, {Ĩ i, Ĩ j} = f ijk Ĩ
k , {g̃, Ĩ j} = 2ig̃ẽj, (19.52)

have both the structure of a semi-direct sum which reflects the semi-direct structure
of the Lie algebras su(2)⊕̇R

3 and sb(2, C)⊕̇R
3.

In order to unify the two models within a generalized action, whose configuration
space has double dimension with respect to the previous ones, let us introduce the
configuration space variableΦ : t ∈ R → γ ∈ SL(2, C). As in previous sections, we
shall build an action functional in terms of the geometric structures naturally defined
on the tangent space. Therefore, we shall need the pull-back to R of the left invariant
one-form which is defined on the group manifold:

Φ∗(γ −1dγ ) = γ −1γ̇ dt ≡ Q̇I eIdt (19.53)

with eI = (ei, ẽi) the sl(2, C) basis introduced in (19.33) and Q̇I , the left generalized
velocities. Again we adopt the notation which is commonly adopted in field theory
and identify the dynamical variable Φ with γ for the remainder of this section. By
defining the decomposition Q̇I ≡ (Ai,Bi) one has:

γ −1γ̇ dt = (Aiei + Biẽ
i)dt
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where, however, both components are tangent bundle coordinates for SL(2,C). By
using the scalar product (19.23), the components of the generalized velocity can be
explicitly obtained:

Ai = 2Im Tr (γ −1γ̇ ẽi); Bi = 2Im Tr (γ −1γ̇ ei).

Having at our disposal two scalar products in the Lie algebra, defined in (19.34),
(19.35), the proposed action [11] involves both of them, according to :

S =
∫
R
Ldt = 1

2

∫
R

[
k1〈γ −1dγ ∧, ∗γ −1dγ 〉 + k2((γ

−1dγ ∧, ∗γ −1dγ ))
]
, (19.54)

where k1, k2 are real parameters.
Explicitly the generalized Lagrangian reads

L = 1

2
(k ηIJ + GIJ )Q̇I Q̇J (19.55)

with

k ηIJ + GIJ =
(

δij kδji + ε3i
j

−εi j3 + kδji δij + εi l3ε
j
k3δ

lk

)

the generalized metric and the position k1/k2 ≡ k has been made. Euler–Lagrange
equations read in turn:

LΓ Q̇I (k ηIJ + GIJ ) − Q̇PQ̇QCK
IP(k ηQK + GQK ) = 0 (19.56)

where CK
IP are the structure constants of sl(2, C). The matrix k ηIJ + GIJ is non-

singular, provided k2 �= 1, which will be assumed from now on.
In [11] it has been shown that the Lagrangian of the IRR and of its dual model can

be recovered by exploring the global symmetries of the generalized dynamics. If we
choose a local parametrization for the elements of the double group SL(2, C): γ =
g̃g, with g ∈ SU (2) and g̃ ∈ SB(2, C), from (19.54) it is easily seen thatL is invariant
under left and right action of the group SU (2), and under left action of the group
SB(2, C). In order to recover the IRR Lagrangian we therefore gauge the SB(2, C)L
global symmetry, by introducing a SB(2, C) gauge connection C̃ = C̃i(t)ẽi:

γ −1dγ → γ −1DC̃γ = (γ −1γ̇ + γ −1C̃γ )dt (19.57)

and performing the substitution

γ −1γ̇ + γ −1C̃γ = γ −1γ̇ + C̃iγ
−1ẽiγ = Ui ẽ

i + W iei

from which the new variables Ui,W i are easily retrieved. Analogously, in order to
obtain the Lagrangian of the dual model we gauge the global SU (2)R invariance, by
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introducing the SU (2) gauge connection C = Ci(t)ei so to have

γ −1dγ → γ −1Dγ = Ũi ẽ
i + W̃ iei. (19.58)

By considering each of the gauged Lagrangian functions, LC̃ or LC and re-expressing
them in terms of the new variables, the partition function Z is considered for each of
them

Z1 =
∫

DgD g̃DC̃e−SC̃ (19.59)

or

Z2 =
∫

DgD g̃DCe−SC (19.60)

and the integration over the gauge potential C̃, respectively C, is performed. Using
techniqueswhich are standard in field theory, the integrationwith respect to the gauge
potentials is traded for the integration with respect toUi, W̃ i respectively, so that we
are left with half the degrees of freedom of the generalized action (19.54) and we
retrieve the IRR model or the dual model, depending on which gauged Lagrangian
we started with. We refer for details to [11].

A generalized kinematics in the context of DFT has been considered in [37].

19.5.1 The Hamiltonian Formalism

Let us shortly review the Hamiltonian picture of the doubled dynamics introduced
above. Phase space is now T ∗SL(2, C) and left generalized momenta associated with
fiber coordinates are represented by:

PI = ∂L

∂Q̇I
= (ηIJ + k GIJ )Q̇J (19.61)

The Hamiltonian reads then:

H = (PI Q̇I − L)P = 1

2
[(η + k G)−1]IJPIPJ (19.62)

with

[(η + k G)−1]IJ = 1

2
(1 − k2)−1

(
δij + εil3ε

j
k3δ

lk −εi j3 − kδij
εi

j3 − kδji δij

)
. (19.63)

From (19.61) one can explicitly write the generalized momenta PI in terms of the
components of Q̇I ≡ (Ai,Bj), thus finding:
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PI ≡ (Ii, Ĩ
i) =

(
δijA

j + (kδji + ε
j3
i )Bj, (kδ

i
j − εij3)A

j + [δij + δlkεil3ε
j
k3]Bj

)
.

(19.64)
In terms of the components Ii, Ĩ j, it turns out that:

H = 1

2
(1 − k2)−1

[
(1 − k2)δijIiIj + δij(Ĩ

i − Is(kδ
si + εsi3))(Ĩ

j − Ir(kδ
rj + εrj3))

]
(19.65)

In order to obtain the Hamilton equations for the generalized model on the Drinfel’d
double, one can proceed as in the previous sections with the determination of Poisson
brackets from the first-order action functional [11], which yields:

{Ii, Ij} = εij
k Ik (19.66)

{Ĩ i, Ĩ j} = f ijk Ĩ
k (19.67)

{Ii, Ĩ j} = εj il Ĩ
l − Il f

lj
i {Ĩ i, Ij} = −εi jl Ĩ

l + Il f
li
j (19.68)

while the Poisson brackets between momenta and configuration space variables g, g̃
are unchanged with respect to T ∗SU (2),T ∗SB(2, C). We refer to [11] for details.

Poisson brackets may be written in compact form:

{PI ,PJ } = CK
IJPK (19.69)

with CK
IJ the structure constants specified above. Thus we have, for Hamilton equa-

tions of motion:

d

dt
PI = {PI , Ĥ } = [(η + k G)−1]JK {PI ,PJ }PK = [(η + k G)−1]JKCL

IJPLPK

(19.70)
which is not zero, consistently with (19.56) and expresses the non-invariance of the
Hamiltonian under right SL(2, C) action.

19.5.2 Poisson Brackets

The Poisson brackets (19.66)–(19.68) among fiber coordinate functions of
T ∗SL(2, C) have the structure of a Lie bi-algebra, with the mixed bracket realizing
the adjoint action of each algebra on the other one. Therefore, they can be regarded
as a deformation of those defined on the cotangent bundle of either partner group, as
stated in (19.10)–(19.12), or in (19.45)–(19.47).

It is possible to show that (19.66)–(19.68) may be derived from a Poisson bracket
on the group manifold of SL(2, C), by linearization at the identity of the group, as
in (19.14).

Before commenting on that, let us first consider Poisson brackets introduced long
time ago in [10, 34] in the form
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{γ1, γ2} = −γ1γ2r
∗ − rγ1γ2 (19.71)

Here γ1 = γ ⊗ 1, γ2 = 1 ⊗ γ2 while r ∈ d ⊗ d is the classical Yang-Baxter matrix:

r = ẽi ⊗ ei (19.72)

satisfying the modified Yang–Baxter equation

[r12, r13 + r23] + [r13, r23] = h

with r12 = ẽi ⊗ ei ⊗ 1, r13 = ẽi ⊗ 1 ⊗ ei, r23 = 1 ⊗ ẽi ⊗ ei and h ∈ d ⊗ d ⊗ d an
adjoint invariant element in the enveloping algebra. The matrix

r∗ = −ei ⊗ ẽi (19.73)

is also solution of the Yang-Baxter equation. On writing γ as γ = g̃g it can be easily
checked that (19.71) is compatible with the following choice

{g1, g2} = [r∗, g1g2], (19.74)

{g̃1, g2} = −g̃1rg2 (19.75)

{g̃1, g̃2} = −[r, g̃1g̃2], (19.76)

with g1 = g ⊗ 1, g2 = 1 ⊗ g, g̃1 = g̃ ⊗ 1 and g̃2 = 1 ⊗ g̃. Equations (19.74),
(19.76) are the so-called Sklyanin brackets [38] on C∞(G),C∞(G∗) respectively,
which make both groups into Poisson–Lie groups, according to the definition we
have given in Sect. 19.3.

Let us sketch how to recover (19.10)–(19.12) when passing from the double group
SL(2, C) to either of the cotangent bundles. In order to recover the Poisson algebra
for T ∗SU (2), one has to rescale the matrix r and the group elements of SB(2, C) by a
real parameter λ. By expanding up to first order, g̃(λ) = eiλIi ẽ

i = 1 + iλIiẽi + O(λ2)

and replacing into (19.76) we obtain:

{g̃1, g̃2} =� −λ2ẽi ⊗ ẽj{Ii, Ij} + O(λ3),

which has to be equated to

[r, g̃1g̃2] � −λ2Ikε
k
ijei ⊗ ej + O(λ3) (19.77)

thus yielding
{Ii, Ij} = εkijIk . (19.78)

As for (19.75) in order to compute its l.h.s. we use the parametrization g = y0σ0 +
iyiσi, so that, up to first order in λ
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{g̃1, g2} = 2iλ
({Ii, y0}ẽi ⊗ e0 + i{Ii, yj}ẽi ⊗ ej

) + O(λ2) (19.79)

while for the r.h.s.

− g̃1rg2 � −λ(y0ẽk ⊗ ek + iyjẽk ⊗ (δkje0 + iεikjei) (19.80)

thus yielding

{Ii, y0} = −yjδij

{Ii, yj} = y0δji − ykεjki

where the first one is compatible with the second one, by using (y0)2 = 1 − ∑
k y

kyk .
Finally, on considering (19.74), and rescaling r∗ by some parameter, we observe that
the LHS doesn’t depend on λ whereas the RHS does. Therefore we get

{y0, yj} = {yi, yj} = 0 + O(λ). (19.81)

Thus, (19.78), (19.81), (19.81) reproduce correctly the canonical Poisson brackets
on the cotangent bundle T ∗SU (2).

The Poisson brackets for the cotangent bundle T ∗SB(2, C) are obtained in com-
plete analogy, when considering r∗ as an independent solution of the Yang-Baxter
equation

ρ = −μek ⊗ ẽk (19.82)

and expanding g ∈ SU (2) as a function of the parameter μ

g = 1 + iμĨ iei + O(μ2). (19.83)

Let us go back to the fully non-Abelian Poisson algebra represented by (19.66)–
(19.68). This is in turn obtained by linearizing the following Poisson bracket [10]:

{γ1, γ2} = λ

2

[
γ1(r

∗ − r)γ2 − γ2(r
∗ − r)γ1

]
. (19.84)

Indeed, on expanding γ ∈ D as γ = 1 + iλIiẽi + iλĨ iei and rescaling r, r∗ by the
same parameter λ, we get, on the l.h.s. of (19.84),

{γ1, γ2} = −λ2
(
{Ii, Ij}ẽi ⊗ ẽj + {Ĩ i, Ĩ j}ei ⊗ ej + {Ii, Ĩ j}(ẽi ⊗ ej − ej ⊗ ẽi)

)

while, on the r.h.s. of the same equation:

−λ2
(
Isε

s
ij ẽ

i ⊗ ẽj + Ĩ sf ij
s ei ⊗ ej + Isf

sj
i (ẽi ⊗ ej − ej ⊗ ẽi) + Ĩ sεjsi(ẽ

r ⊗ ej − ej ⊗ ẽi)
)

.

By equating the two results we arrive at:
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{Ii, Ij} = εij
k Ik

{Ĩ i, Ĩ j} = f ijk Ĩ
k

{Ii, Ĩ j} = −fi
jk Ik − Ĩ kεki

j

which is what we wanted to prove.
To summarize, all brackets we have employed throughout the paper are related

either to the double structure of SL(2, C) or to the Poisson-Lie nature of the dual part-
ners of the Iwasawa decomposition, SU (2), SB(2, C). The final, interesting question
which one could address concerns the nature of symmetries of the physical systems
considered, which is the subject of next subsection.

19.5.2.1 Poisson-Lie Simmetries

We closely follow [13] for the forthcoming discussion. In particular we want to dis-
cuss towhat extent themodels possess Poisson-Lie symmetries. Poisson-Lie symme-
tries are Lie group transformations implemented on the carrier space of the dynamics
via groupmultiplication, which, in general, are not canonical transformations as they
need not preserve the symplectic structure. However, if the Poisson structure is of
the form (19.71) with carrier space D itself, or (19.74), (19.76) if we are looking
at G, G∗ respectively, Poisson brackets can be made invariant if the parameters of
the group of transformations are imposed to have nonzero Poisson brackets with
themselves. Group multiplication is then said to correspond to a Poisson map. We
have for example, for the right transformations of G on D,

γ → γ h, h ∈ G, γ ∈ D (19.85)

and the left action of G∗ on D,

γ → h̃γ, h∗ ∈ G∗ γ ∈ D. (19.86)

In terms of the coordinates (g̃, g) this implies

g → gh, g̃ → g̃, (19.87)

for the former and
g → g, g̃ → h̃g̃, (19.88)

for the latter. By themselves these transformations do not preserve the Poisson brack-
ets (19.74)–(19.76). But they can be made to be invariant if we require that the
parameters of the transformation, h, have the following Poisson brackets

{h1, h2} = [r∗, h1h2], (19.89)
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and zero Poisson brackets with g and g̃. Then SU (2) right multiplication is a Poisson
map and (19.85) corresponds to a Poisson Lie group transformation. For (19.86) to
be a Poisson Lie group transformation, h̃ must have the following Poisson bracket
with itself

{h̃1, h̃2} = −[r, h̃1h̃2], (19.90)

and zero Poisson brackets with g and g̃. Since the right-hand-sides of (19.89) and
(19.90) vanish in the limit λ → 0, the transformations (19.85) and (19.86) become
canonical in the limit.
Moreover, Poisson brackets (19.74)–(19.76) are invariant under the simultaneous
action of both G and G∗ via (19.85) and (19.86), if we assume that

{h̃1, h2} = 0. (19.91)

By comparing with (19.75) we conclude that the algebra of the observables g and g̃
is different from the algebra of the symmetries parametrized by h and h̃. Therefore,
dynamics on the groupmanifold of SL(2, C) and on the twopartner groups SU (2) and
SB(2, C) possesses Poisson-Lie group symmetries, when endowed with the above
mentioned brackets.

Let us go back to the symplectic structures of the IRR and the dual model, respec-
tively given by (19.11) and (19.46). We have seen in Sect. 19.5.2 that the former is
obtained from (19.76) while the latter is obtained from (19.74), for small (but non-
zero) value of the parameters λ andμ. Therefore momentum variables of each model
inherit their Poisson brackets from the Poisson-Lie structure of the dual group, which
in turn exhibits Poisson-Lie symmetry according to the definition we have recalled
above. It is only in this way that Poisson–Lie symmetry manifests itself in the models
considered.4

19.6 Conclusions

Wehave used thewell established notion of Poisson–Lie groups andDrinfel’d double
to understand in a clear geometric setting concepts such as target-space duality,
generalized geometry and doubling of degrees of freedom. To this, we have chosen
as a toy model a simple dynamics on the group manifold of SU (2), which is that
of the isotropic rigid rotor, inspired by an existing description of the model on the
double Lie group SL(2,C) [13]. We have introduced a new dynamical model which
is dual to the standard IRR andwe have used the Drinfel’d double of the group SU (2)
as the configuration space for the dynamics of a generalized model, with doubled
degrees of freedom. Moreover, we have shown that, from the generalized action, the

4The issue of Poisson–Lie symmetries for dynamics such as those discussed in this paper is further
elucidated and better understood in the context of field theory in a recent paper [12], where a higher
dimensional analogue of the IRR is analyzed. We refer to that for details.
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usual description with half the degrees of freedom, can be recovered by gauging one
of its symmetries. This model represents an ideal arena to analyze in a simple context
the meaning to physics of generalized and doubled geometry structures.

The simple model of the IRR is especially interesting as a toy model for field
theories with non-trivial target spaces such as Principal Chiral Models. The latter are
non-linear sigma models defined on some d + 1 dimensional space–time in terms
of group–valued fields, ϕ : Rd+1 → SU (N ), hence representing a d dimensional
generalization of the IRR model. For d = 1 and the target space reduced to some
coset space of the group, these models are also of interest for string theory.

By simply looking at the action functional

S = 1

2

∫
Rn

Tr [ϕ∗(g−1dg) ∧ ∗
H
ϕ∗(g−1dg)], (19.92)

with now ϕ : R
d+1 → g ∈ SU (N ) and ∗

H
the Hodge star operator on R

d+1, their

analogy with the IRR appears evident. Indeed, in [12] the analysis performed here
has been generalized, starting from an alternative description of Principal Chiral
Models given in [39–42] (also see [43, 44] where sigma models are studied in the
DFT context) and the symmetries have been discussed.
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Chapter 20
Loops of Legendrians in Contact
3-Manifolds

Eduardo Fernández, Javier Martínez-Aguinaga and Francisco Presas

Abstract Westudy homotopically non-trivial spheres ofLegendrians in the standard
contact R

3 and S
3. We prove that there is a homotopy injection of the contactomor-

phism group of S
3 into some connected components of the space of Legendrians

induced by the natural action. We also provide examples of loops of Legendrians
that are non-trivial in the space of formal Legendrians, and thus non-trivial as loops of
Legendrians, but which are trivial as loops of smooth embeddings for all the smooth
knot types.

20.1 Introduction

This small note summarizes the current understanding of the topology of the spaces
of Legendrian embeddings in the 3-dimensional case just using classical invariants.
The study of the connected components of those spaces has been a classical topic in
the Contact Topology literature [3, 4, 6–8, 14, 16].

Here we focus on the higher dimensional homotopy groups, in particular in the
fundamental group. We define invariants and provide partial classifications by con-
sidering the space of Legendrian embeddings as a subspace of the space of formal
Legendrian embeddings. Then, we provide non-trivial homotopy elements consid-
ered as homotopy classes in the space of formal Legendrian embeddings and clearly
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we conclude that the classes are non-trivial in the space of Legendrian embeddings.
Do note that, in dimension 3, there are not known examples of non-trivial spheres of
Legendrian embeddings that are trivial as spheres of formal Legendrian embeddings,
see [9].

20.2 Preliminaries on Contact 3-Manifolds

We introduce the basic terminology in 3-dimensional contact topology that we are
going to use. For further details see [10].

20.2.1 Contact 3-Manifolds

Definition 1 Let M be a 3-manifold. A plane field ξ ⊆ TM is said to be a contact
distribution if it is everywhere non integrable, i.e. locally ξ can be regarded as the
kernel of a 1-form α ∈ �1(M ) such that

α ∧ dα �= 0. (20.1)

The pair (M , ξ) is a contact 3-manifold.

Assume that ξ is coorientable. Thus, ξ = ker α for some 1-form α ∈ �1(M )

satisfying (20.1). The election of α is unique up to a conformal factor. From now on,
we will focus in the case of cooriented contact structures.

A diffeomorphism f : (M1, ξ1) → (M2, ξ2) between two contact 3-manifolds,
such that f∗ξ1 = ξ2 is said to be a contactomorphism. Denote byCont(M , ξ) the group
of contactmorphisms from (M , ξ) to itself. Locally any two contact 3-manifolds are
contactomorphic, this is the content ofDarboux’s Theorem (see [10], Theorem2.5.1).

The Reeb vector field associated to a contact form α defining a contact manifold
(M , ξ = ker α) is the unique vector field Rα defined by the conditions α(Rα) ≡ 1
and iRα

dα ≡ 0.

Example 1 The two basic examples that we are going to study in this note are the
following

(i) The standard contact structure on R
3(x, y, z) given by ξstd = ker(dz − ydx).

(ii) The standard contact structure on S
3 ⊆ C

2(z1, z2) given by ξstd = TS
3 ∩ iTS

3 =
ker( i

2

∑
j zjd z̄j − z̄jdzj), where i : TC

2 → TC
2 denotes the standard complex

structure onC
2. It follows that (R3, ξstd) is contactomorphic to (S3\{p}, ξstd|S3\{p}),

for any point p ∈ S
3 (see [10], Proposition 2.1.8). This justifies the notation.
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20.3 Legendrian Submanifolds

Following [7, 10] we introduce the notion of Legendrian submanifold of a contact
manifold.We define the (formal) classical invariants.We also introduce two (formal)
invariants for loops of Legendrians.

20.3.1 Legendrian Submanifolds

Definition 2 Let (M , ξ) be a contact 3-manifold. An embedded oriented circle L ⊆
M is said to be Legendrian if TL ⊆ ξ . A Legendrian embedding is any embedding
that parametrizes a Legendrian submanifold.

Denote by L̂eg(M , ξ) the space of Legendrian submanifolds of (M , ξ) and by
Leg(M , ξ) the space of Legendrian embeddings of (M , ξ). Note that L̂eg(M , ξ) =
Leg(M , ξ)/Diff+(S1).

A key result in the theory of Legendrian submanifolds is the Weinstein’s Tubular
Neighbourhood Theorem (see [10], Corollary 2.5.9) which asserts that two diffeo-
morphic Legendrians have contactomorphic neighbourhoods. Thus, any Legendrian
circle L in a contact 3-manifold has a tubular neighbourhood contactomorphic to a
tubular neighbourhood of S

1 × {0} ⊆ (S1 × R
2(θ, (x, y)), ker(cos θdx − sin θdy)).

20.3.1.1 Projections

There are two distinguished projections π : R
3 → R

2 that are useful in the study of
Legendrians. When projecting onto R

2 via the two projections that we will define,
each embedding ismapped to a unique curve inR

2. Nevertheless, the converse results
are partially true.We can recover a unique Legendrian curve in (R3, ξstd) from curves
in R

2 satisfying certain conditions.

Definition 3 We define the Lagrangian projection as

πL : R
3 −→ R

2

(x, y, z) 
−→ (x, y).

This projection has the property that maps immersed Legendrian curves in
(R3, ξstd) to immersed curves in R

2. In addition, the z-coordinate can be recovered
by integration:

z(t1) = z(t0) +
∫ t1

t0

y(s)x′(s)ds.
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Thus, in order for a closed curve inR
2 to lift to a closed Legendrian, it is necessary

that the closed immersed disk that bounds the curve has zero (signed) area.
On the other hand we have:

Definition 4 We define the front projection as

πF : R
3 −→ R

2

(x, y, z) 
−→ (x, z).

We can recover the y-coordinate by differentiating:

y(s) = z′(s)
x′(s)

.

The cases x′(s0) = z′(s0) = 0 are allowed as soon as the limit is well defined.

20.3.2 Classical Invariants

There are three classical invariants of Legendrian embeddings that we will introduce
(for simplicity) only in the context of (R3, ξstd) and (S3, ξstd). The first one is the
smooth knot type of the embedding, which is purely topological.

Let (M , ξ) be (R3, ξstd) or (S3, ξstd). Let γ ∈ Leg(M , ξ) be a Legendrian embed-
ding. We call contact framing to the trivialization of its normal bundle ν(γ ) given by
the Reeb vector field along the knot. We call topological framing of γ to the framing
F� of ν(γ ) defined by any Seifert surface of γ .

Definition 5 The Thurston-Bennequin invariant of γ , denoted by tb(γ ), is the twist-
ing of the contact framing with respect to the topological framing.

Fix a global trivialization of ξ , this election is unique up to homotopy since
π0(Maps(M , S

1)) = 0 for the two particular manifolds that we are studying. Thus,
the derivative of the Legendrian embedding defines a map γ ′ : S

1 → R
2\{0}.

Definition 6 The rotation number of γ ∈ Leg(M , ξ) is

Rot(γ ) = deg γ ′.

It follows that the rotation number is well defined and independent of the trivial-
ization of ξ . In the case that ξ is non-trivial, we can define the rotation number for
null-homologous knots by just taking a Seifert surface 	 on a fixed homology class
and selecting a framing for ξ|	 that induces a framing over the boundary by restric-
tion. The induced framing on ξ|γ is independent of the choice (see [10], Proposition
3.5.15).

There is an important result relating the three classical invariants of Legendrian
embeddings in (R3, ξstd) and (S3, ξstd).
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Proposition 1 (Bennequin’s inequality, [1]) Let χ(	) denote the Euler character-
istic of a Seifert surface 	 for the Legendrian embedding γ . Then the following
inequality holds:

tb(γ ) + |Rot(γ )| ≤ −χ(	). (20.2)

20.3.3 Invariants for Loops of Legendrian Embeddings

We consider parametrized loops, when we quotient by the parameter we explicitely
mention it. Let (M , ξ) be (R3, ξstd) or (S3, ξstd). We can also define certain (formal)
invariants for loops of Legendrian embeddings γ θ inLeg(M , ξ). The first invariant is
the homotopy class of the loop of smooth embeddings, i.e. [γ θ ] ∈ π1

(
Emb(S1, M )

)
,

where Emb(N1, N2) denotes the space of embeddings of a manifold N1 into another
manifold N2.

The second invariant for loops of Legendrians embeddings is the following.

Definition 7 The rotation number of the loop γ θ is

Rotπ1(γ
θ ) = deg(θ 
→ (γ θ )′(0)).

In order to define a different invariant, we assume that there exists a loop of Seifert
surfaces	θ for γ θ . Thus, we have a loop of topological framings for ν(γ θ ). Bymeans
of the Reeb vector field, we can understand this loop as a F θ

� : S
1 → R

2\{0}.
Definition 8 The Thurston-Bennequin number of the loop γ θ is

tbπ1(γ
θ ) = − deg(θ → F θ

� (0)).

The Thurston-Bennequin number is not necessarily well defined for all the loops
of Legendrian embeddings, since we are assuming that we have a loop of topological
framings. The key point is the existence and uniqueness of such a loop.

Assume that a loop of smooth embeddings γ θ is homotopically trivial, i.e. there
is γ z, z ∈ d, whose boundary is γ θ . Thus, there is a unique topological framing on
γ z

|z=0 induced by any choice of Seifert surface. This induces a unique 1-parametric
family of topological framings on the loop γ θ . Now, assume that we have a 2-sphere
S of smooth embeddings. If we understand it as the union of two disks we get by the
previous construction two possibly different topological framings for the equator γ θ .
The difference between the two loops is measured by an integer d(S). We conclude
that we have a well defined morphism of abelian groups d : π2(Emb(S1, M )) →
Z; S 
→ d(S). Obviously Image(d) = k0Z for some integer k0.

Recall that there is a natural left action of Diff+(M ) on Emb(S1, M ). Denote by
�γ : Diff+(M ) → Emb(S1, M ) the orbit of an embedding γ under the action.

We can state the following proposition that is obviously true by the previous
discussion.
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Proposition 2 Let γ θ be a loop Legendrian embeddings. In any of the two following
cases tbπ1 is a well defined invariant:

(A) If π1(�γ ) is an monomorphism and [γ θ ] ∈ Image(π1(�γ )) or
(B) γ θ is trivial as a loop of smooth embeddings. In this case tbπ1(γ

θ ) ∈ Z/k0Z.

Remark 1 Assume that γ θ satisfies condition (A) and condition (B). Then, k0 = 0
and tbB

π1
(γ θ ) = tbA

π1
(γ θ ) ∈ Z. The reason is that condition (B) provides a capping

disk γ r,θ for γ θ . Now the segment γ r,θ0 , by the Isotopy Extension Theorem, can be
represented by a segment of diffeomorphisms �r,θ0 , i.e. �0,θ0 = Id and �r,θ0(γ

0) =
γ r,θ0 . Thus, �1,θ (γ

0) = γ θ and the two definitions do coincide. This also implies
k0 = 0. For this reason, we do not specify if we are considering the type (A) invariant
or the type (B) invariant in the discussion that follows.

Finally, we can state the following useful formulas.

Proposition 3 Let γ θ be a loop of Legendrian embeddings. For each k ∈ Z define
the reparametrizations γ θ,k(t) := γ θ (t − kθ). Then,

(i) Rotπ1(γ
θ,k) = Rotπ1(γ

θ ) − k Rot(γ 0),
(ii) tbπ1(γ

θ,k) = tbπ1(γ
θ ) − k tb(γ 0), whenever the tbπ1 is well defined for both

loops.

Remark 2 Hatcher’s work about knot spaces in S
3 implies that tbπ1 is well defined

for many cases:

• The connected component Emb0(S
1, S

3) of the trivial embedding has the ho-
motopy type of V4,2, the space of parametrized great circles (see [11], Ap-
pendix: Equivalence (20.6)). Note that, π1(V4,2) = 0 and π2(V4,2) ∼= Z. In this
case tbπ1 ∈ Z is always defined since k0 = 0. Indeed, consider S

3 as a sub-
manifold of the quarternions R

4(i, j, k), the generator of π2(Emb0(S
1, S

3)) is
the 2-sphere {γp : p ∈ S

2(i, j, k)}, meaning that γp(θ) = cos θ + p sin θ . It is
clear that a normal framing for γi is given by τi(θ) = 〈j, k〉. We choose as
equator the loop of curves γp with p ∈ S

1(j, k). We look for a family of dif-
feomorphisms Ap,r : R

4 → R
4, (p, r) ∈ S

1(j, k) × [0, 1], such that Ap,r(γi) =
γ(cos π

2 r)i+(sin π
2 r)p and Ap,r(1) = 1. We can, indeed, choose Ap,r to be the lin-

ear rotation of angle π
2 r around the axis defined by 〈1, i · p〉. With this choice

it is clear that the S
1-parametric family of knots γp = Ap,1γi has an associ-

ated family of framings τp = 〈(cosφ)i + sin φ((sin φ)j − (cosφ)k), (sin φ)i +
cosφ((sin φ)j − (cosφ)k)〉, with p = (cosφ)j + (sin φ)k. Choosing the south
pole −i ∈ S(i, j, k), we define the framing τ−i(θ) = 〈−j,−k〉. We repeat the pre-
vious process but taking a family of linear isomorphisms preserving the axis
〈1,−i · p〉. Obviously, we get a S

1-family of framings τ̃p that satisfies τ̃p = τp.
We have proven that d([γp]) = 0.

• The connected component Embp,q(S
1, S

3) of a non-trivial parametrized (p, q)

torus knot has the homotopy type of SO(4) and the homotopy equivalence is
induced by the action Diff+(S3) → Embp,q(S

1, S
3) (see [12], Theorem 1). Recall

that Diff+(S3) is homotopy equivalent to SO(4) (see [11]). In this case, tbπ1 ∈ Z

is always defined.
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• The connected component Emb′(S1, S
3) of an hyperbolic parametrized knot γ

has the homotopy type of S
1 × SO(4) (see [12], Theorem 1). In particular,

Emb′(S1, S
3) has trivial second homotopy group. Moreover, the map π1(�γ ) is

injective. Thus, tbπ1 ∈ Z is well defined for loops in Image(�γ ) and for smoothly
trivial loops.

20.4 The Formal Viewpoint

Following [9] we study Legendrians from a formal viewpoint in (R3, ξstd) and
(S3, ξstd). The assumption of restricting to the standard structures is only made for
simplicity in the statements.1 For a more general discussion see [15].

20.4.1 Formal Legendrian Embeddings

Definition 9 Let (M , ξ) be (R3, ξstd) or (S3, ξstd). A formal Legendrian embedding
into (M , ξ) is a pair (γ, Fs) such that

(i) γ : S
1 → M is an embedding,

(ii) Fs : S
1 → γ ∗(TM \{0}), s ∈ [0, 1], is a homotopy between F0 = γ ′ and F1 :

S
1 → γ ∗(ξ\{0}) ⊆ γ ∗(TM \{0}).

Trivialize TM and ξ . From now on we understand Fs : S
1 → S

2 and F1 : S
1 →

S
1 = S

2 ∩ ξ . On (R3(x, y, z), ξstd) we fix the framing ξstd = 〈∂x + y∂z, ∂y〉. On
(S3, ξstd) we fix the framing given by ξstd(p) = 〈jp, kp〉, where we are using quar-
ternionic notation, i.e. S3 ⊆ R

4(i, j, k).
Denote by FLeg(M , ξ) the space of formal Legendrian embeddings. In order

to study the homotopy type of the space of formal Legendrians we introduce the
following auxiliary space FLeg(M , ξ) = Emb(S1, M ) × LS

1, where LX denotes
the free loop space of a connected manifold X . Recall that LX has the homotopy
type of X � �p(X ) and, moreover, if X is a Lie group then LX ∼= X × �1(X ). We
have a natural fibration

f : FLeg(M , ξ) −→ FLeg(M , ξ)

(γ, Fs) 
−→ (γ, F1).

The morphism f is surjective. Indeed, given (γ, F1) we need to find a homo-
topy between γ ′ and F1 inside LS

2. Since F1 is null homotopic (in LS
2) by the

Legendrian condition, this is equivalent to say that γ ′ is null homotopic which
is true, by dimensional reasons, for every embedding γ ∈ Emb(S1, M ). Fix as
base point (γ, γ ′) ∈ FLeg(M , ξ), with γ ∈ Leg(M , ξ). The fiber over this point

1In fact, the statements follow for any contact structure on R
3 or S

3.
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is �γ ′(LS
2). Denote the diagonal maps in the associated long exact sequence in ho-

motopy by ∂k : πk(FLeg(M , ξ)) → πk−1(�γ ′(LS
2)) ∼= πk(LS

2). Recall that, by the
Smale-Hirsch h-principle for immersions [13], Imm(S1, M ) has the homotopy type
of LM × LS

2. Let p2 : LM × LS
2 → LS

2 be the projection onto the second factor
and i : Emb(S1, M ) ↪→ Imm(S1, M ) the natural inclusion. We have the following.

Lemma 1 The homorphisms ∂k and πk(p2) ◦ πk(i) coincide. More precisely, if
(γ z, Fz

1) ∈ πk(FLeg(M , ξ)) then

∂k(γ
z, Fz

1) = πk(p2) ◦ πk(i)(γ
z) ∈ πk(LS

2).

Proof The image of (γ z, Fz
1) by ∂k measures the difference between the deriva-

tive (γ z)′ and Fz
1 as elements in πk(LS

2). The homotopy class of Fz
1 is zero by

the Legendrian condition. Thus, ∂k(γ
z, Fz

1) = (γ z)′ ∈ πk(LS
2), i.e. ∂k(γ

z, Fz
1) =

πk(p2) ◦ πk(i)(γ z). �

With the previous discussion in mind one can conclude the following well known
fact, we refer the reader to [9] or [15] for a proof.

Theorem 1 Formal Legendrian embeddings are classified by their parametrized
knot type, rotation number and Thurston–Bennequin invariant.

About the fundamental group of the space of formal Legendrian embeddings we
can state the following.

Theorem 2 ([9],Theorem 3.4.1) Let γ ∈ Leg(M , ξ) be a Legendrian embedding.
Fix (γ, γ ′) ∈ FLeg(M , ξ) as the base point. Then, there exist numbers m1, m2 ∈ Z≥0,
depending only on the parametrized knot type of γ , such that the following sequence

0 Zm1 ⊕ Zm2 π1(FLeg(M , ξ)) π1(Emb(S1, M )) ⊕ Z 0

is exact. Moreover, the last Z factor corresponds to the Rotπ1 invariant.

20.5 The Action of Cont(S3, ξstd) on the Space L̂eg(S3, ξstd)

20.5.1 The Action of the Contactomorphism Group on the
Space of Legendrians

Recall that on S
3 ⊆ C

2 the standard contact structure ξstd is defined as the complex
tangencies of the 3-sphere; i.e. ξstd(p) = TpS

3 ∩ i(TpS
3), p ∈ S

3. Thus we have a
natural inclusion

U(2) ↪→ Cont(S3, ξstd). (20.3)



20 Loops of Legendrians in Contact 3-Manifolds 369

This map has a geometrically left inverse given by the evaluation of the 1-jet
of a contactomorphism at the north pole N ∈ S

3. Hence, the last inclusion induces
an injection in all homotopy groups. Moreover, it is a well known fact ([5]) that
the inclusion U(2) ↪→ Cont(S3, ξstd) is a weak homotopy equivalence (see [2] for a
complete proof).

Consider the restriction of the natural action of the contactomorphism group on
the space of Legendrians to the unitary group. Fix a Legendrian L ∈ L̂eg(S3, ξstd).
The orbit of this Legendrian is described by the map

�̂L : U(2) −→ L̂eg(S3, ξstd)

A 
−→ A(L).
(20.4)

Observe that we have an analogous action in the space of Legendrian embeddings.
The orbit of γ ∈ Leg(S3, ξstd) is given by

�γ : U(2) −→ Leg(S3, ξstd)

A 
−→ A · γ.
(20.5)

20.5.2 Homotopy Injection of Cont(S3, ξstd) in L̂eg(S3, ξstd)

The main result of this section is the following one.

Theorem 3 The map

πk(�̂L) : πk(U(2), Id) → πk (̂Leg(S
3, ξstd), L)

is an injection for all k ≥ 2. Moreover, if one of the following conditions is satisfied

• Rot(L) = 0 or
• tb(L) �= 0 and L is an unknot or a torus knot or a hyperbolic knot,

then the map π1(�̂L) is also an injection.

Remark 3 By Proposition 1 the second condition is always satisfied for any Legen-
drian unknot. Moreover, the classification of the Legendrian figure eight knots (see
[8]) implies that the second condition is always satisfied.

Proof For p ∈ S
3, we have that ξstd(p) = 〈jp, kp〉. Let γ ∈ Leg(S3, ξstd) be any

parametrization of L. Since the unitary groups acts transitively on S
3 we may as-

sume that γ (0) = (1, 0)t ∈ S
3 ⊆ C

2. �
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Lemma 2 The maps

πk(�γ ) : πk(U(2), Id) → πk(Leg(S
3, ξstd), γ )

are injective for all k.

Proof The composition

SU(2) −→ Leg(S3, ξstd) −→ S
3

A 
−→ A · γ 
−→ A(γ (0)),

defines a diffeomorphism. Thus, since πk(U(2)) ∼= πk(SU(2)) for k ≥ 2, we con-
clude that πk(�γ ) is injective for k ≥ 2.

Observe that π1(U(2)) = {[Aθ ]m = [Am
θ ] : m ∈ Z} where

Aθ =
(
1 0
0 eiθ

)

, θ ∈ S
1.

Hence,
Rotπ1(A

m
θ · γ ) = m

and π1(�γ ) is also injective. �

Since L̂eg(S3, ξstd) = Leg(S3, ξstd)/Diff+(S1) the last lemma implies thatπk(�̂L)

is injective for k ≥ 2.
To conclude the injectivity of themapπ1(�̂L)wemust check that the loopsAm

θ (L),
m �= 0, are non trivial for any choice of parametrization. The possible parametriza-
tions of these loops are given by

γ θ,k
m (t) = Am

θ γ (t − kθ), k ∈ Z.

Assume that there exists k ∈ Z such that γ θ,k
m is trivial. Thus,

Rotπ1(γ
θ,k
m ) = Rotπ1(γ

θ,0
m ) − k Rot(L) = m − k Rot(L) = 0. (20.6)

Hence, if Rot(L) = 0 the map π1(�̂L) is injective.
From now on assume that L is an unknot or a torus knot or a hyperbolic knot. The

tbπ1 invariant is always well defined for the unknot and any torus knot. Moreover, for
a hyperbolic knot tbπ1 is well defined in Image(�̂L). Assume that there exists k ∈ Z

such that γ θ,k
m is trivial for m �= 0. Thus, k �= 0 by (20.6). On the other hand

tbπ1(γ
θ,k
m ) = tbπ1(γ

θ,0
m ) − k tb(L) = −k tb(L) = 0. (20.7)
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Realize that, since γ θ,0
m = Am

θ · γ 0. Thus, after fixing a Seifert surface S0 for γ 0,
we get a family of Seifert surfaces Sθ and it is clear that tbπ1(γ

θ,0
m ) = 0. Hence, if

tb(L) �= 0 the map π1(�̂L) is an injection. �

20.5.3 Non Injectivity of the Map
π1(L̂eg(S3, ξstd),L) → π1(̂K(S3),L)

Let K̂(S3) be the space of embedded circles in S
3. The map (20.4) allows us to

construct plenty of examples of loops which are homotopically trivial in the smooth
category, i.e. inside K̂(S3), but non-trivial in the Legendrian setting.

Proposition 4 Let L ∈ L̂eg(S3, ξstd) be a Legendrian which satisfies one of the fol-
lowing conditions:

• |Rot(L)| �= 1, 2 or
• tb(L) �= 0 and L is an unknot or a torus knot or a hyperbolic knot.

Then, the homomorphism π1(̂Leg(S
3, ξstd), L) → π1(K̂(S3), L), induced by the

inclusion, is non injective.

Proof Assume that the second condition holds. Let m �= 0 be any even integer, by
Theorem 3 the loop Am

θ (L) is non-trivial. Finally, observe that since m is even Am
θ is

trivial as a loop in SO(4). Thus, Am
θ (L) is homotopically trivial inside K̂(S3).

On the other hand, assume that the first condition holds. Let γ ∈ Leg(S3, ξstd) be
anyparametrizationofL. Takem = Rot(L) + 2 ifRot(L) is even andm = Rot(L) + 1

Fig. 20.1 Schematic picture of the loop Am
θ (L) for the standard Legendrian unknot L, θ ∈ [0, π/m]
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if it is odd. Since m is even Am
θ (L) is trivial in K̂(S3). However, the loop Am

θ (L) is

non-trivial inside L̂eg(S3, ξstd). Indeed, all the parametrizations of the loop are given
by γ θ,k

m (t) = Am
θ γ (t − kθ). The equality Rotπ1(γ

θ,k
m ) = m − k Rot(L) = 0 cannot

hold for any k ∈ Z since it implies that Rot(L) divides 1 or 2 and this is not true
(Fig. 20.1). �
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